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The parallel distributed numerical solution of PDEs in large scientific applications
and industrial simulations often rely on the splitting of the underlying mesh. Each sub-
mesh is allocated to one processor and suitable solution techniques are implemented to
efficiently handle this data distribution. Among the possible numerical approaches, we
consider in this work an algebraic non-overlapping domain decomposition technique for
the solution of 3D linear elliptic problems [3, 7]. In a standard finite element framework,
this approach consists in eliminating the unknowns associated with the internal degrees of
freedom and to reduce the original problem to the solution of a condensed problem only
defined on the interface between the sub-domains. In a matrix form, this approach consists
in performing a partial Gaussian elimination to form the Schur complement associated with
the interface unknowns. The solution of this reduced linear system is classically performed
by a preconditioned Krylov solver. In this talk, we consider an algebraic parallelizable
local preconditioner that can be viewed as an Additive Schwarz preconditioner denoted
by AAS, for the Schur complement. This approach exploits all the information from
the local Schur complement matrices. This preconditioner was introduced in [2] for the
solution of 2D elliptic model problems and implemented for the solution of 2D challenging
numerical simulation in device modeling [6]. We extend this approach to 3D problems
and describe its parallel implementation that relies on a unique feature of the parallel
multi-frontal sparse direct solver Mumps [1]. This software enables us to compute the
local Schur complement at an affordable memory and computational cost thanks to its
multi-frontal approach [4]. Those local Schur complement matrices are then assembled
using neighbour-neighbour communication. Then they are either factorized using a dense
linear Lapack kernel, or first sparsified and then factorized again using Mumps. This
latter approach alleviates the memory and computational cost of the Additive Schwarz
preconditioner while only slightly deteriorating its numerical performance. We refer to
this technique as a sparsified Additive Schwarz preconditioner and denote it as SpAAS.

To investigate the numerical efficiency of the preconditioner we perform some scaled
experiments where either the size of the sub-domains is kept constant (i.e. H

h
constant

where H is the diameter of the sub-domains and h the mesh size) with an increase in the
number of processors; or where the number of processors is kept fixed while increasing the
size of the underlying sub-domain mesh (i.e. H

h
vary). For all the experiments we mention

that each sub-domain is handled by only one processor. Some experiments for the solution
of the Poisson equation are reported in Table 1, we depict the number of iterations of the
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preconditioned conjugate gradient method (PCG). We outline that the size of the problems
solved vary from about 800 000 unknowns on 27 processors up-to almost 10 millions on
343 processors (that is the largest number of processors we succeeded to access so far). As
it could have been expected, the number of iterations increases slightly when the number
of processors is increased. This increase is even less significant when the local sub-problem
size grows. Similar experiments are also reported for SpAAS in Table 1. We observe that
the number of iterations does not change much, but the time per iteration is significantly
reduced, furthermore the memory used is smaller than with AAS. We also display the
elapsed time in ms required by one PCG iteration on an IBM SP4. It can be seen that the
time per iteration is almost constant and does not depend on the number of processors
for both preconditioners.

The purpose of the talk is to describe in detail the preconditioning techniques and
their parallel implementation on a distributed memory computer and to illustrate their
numerical and computational performances. More numerical experiments and memory
aspects will be presented, a particular comparaison with a parallel sparse direct approach
will be reported that will also be described in [5].

# sub-domains

sub-domains size 27 = 33 64 = 43 125 = 53 216 = 63 343 = 73

AAS 16 (25) 23 (26) 25 (27) 29 (28) ongoing
20 × 20 × 20

SpAAS 16 (19) 23 (19) 26 (20) 31 (21) ongoing

AAS 17 (79) 24 (86) 26 (89) 31 (90) ongoing
25 × 25 × 25

SpAAS 17 (55) 25 (56) 28 (57) 34 (58) ongoing

AAS 18 (167) 25 (172) 27 (174) 32 (178) 34 (179)
30 × 30 × 30

SpAAS 18 (98) 26 (102) 29 (104) 36 (105) ongoing

Table 1: # iterations ((ms) per iteration) using AAS and SpAAS
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