
Efficient Parallel Implementation of Classical

Gram-Schmidt Orthogonalization Using Matrix
Multiplication

Takuya Yokozawa, Daisuke Takahashi, Taisuke Boku and Mitsuhisa Sato

Graduate School of Systems and Information Engineering, University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

yokozawa@hpcs.cs.tsukuba.ac.jp

{daisuke,taisuke,msato}@cs.tsukuba.ac.jp

Extended Abstract

The Gram-Schmidt orthogonalization process is one of the fundamental algo-
rithms in linear algebra that implements the QR decomposition of a matrix into
the factorization A = QR. Efficient Gram-Schmidt orthogonalization algorithms
have been investigated thoroughly [1–3]. Two basic computational variants of the
Gram-Schmidt process exist: the classical Gram-Schmidt (CGS) algorithm and
the modified Gram-Schmidt (MGS) algorithm [4]. The modified Gram-Schmidt
(MGS) algorithm is often selected for practical application because it is much
more stable than the CGS algorithm. However, the MGS algorithm cannot be
expressed by Level-2 BLAS, and so parallel implementation requires additional
communication [5].

On the other hand, the CGS algorithm can be expressed by Level-2 BLAS
and is suitable for parallelization. Moreover, the CGS orthogonalization with the
DGKS correction [1] is one of the most efficient ways to perform the orthogo-
nalization process.

We present herein an efficient parallel implementation of the CGS orthogo-
nalization using matrix multiplication. The CGS orthogonalization of a matrix
can be changed into a matrix multiplication. The CGS orthogonalization can
also be extended with matrix multiplication into a recursive formulation. The
recursion leads to automatic variable blocking [6].

A recursive CGS algorithm to perform the QR decomposition is shown in
Fig. 1. Let the matrix A be denoted as A = (a1a2 · · ·an) and the matrix Q be
denoted as Q = (q1q2 · · ·qn). Here, NB, S and w are the blocking size, the work
matrix and the work vector, respectively. The function recursive CGS(A, Q, 0, n)
performs the orthogonalization process of matrix A. We parallelized the recursive
CGS algorithm using a column-wise distribution [3].

In order to evaluate the proposed recursive CGS algorithm, we compared
its performance to that of the proposed recursive CGS algorithm and a naive
implementation of the CGS algorithm using Level-2 BLAS. The CGS orthog-
onalization processes were performed on double-precision real data. A 32-node
Xeon PC cluster (Irwindale 3GHz, 12Kuops L1 instruction cache, 16KB L1

2 Takuya Yokozawa, Daisuke Takahashi, Taisuke Boku and Mitsuhisa Sato

recursive CGS(A, Q, k, m)
if (m <= NB) then

qk = qk/||qk||
do j = k + 1,k + m
do i = j + 1,j + m

GEMV(QT
j,i, ai, w);

GEMV(Qj,i, w, qi);
qi = qi/||qi||

end do
end do

else
recursive CGS(A, Q, k, m/2);

GEMM(QT
k, k+m/2, Am/2+1,m, S);

GEMM(S, Qk, k+m/2, Qm/2+1,m);
recursive CGS(A, Q, k + m/2, m/2);

end if
end

Fig. 1. Recursive classical Gram-Schmidt algorithm in the QR decomposition

data cache, 2MB L2 cache, 1GB DDR2-400 SDRAM main memory per node,
Linux 2.6.16-1smp) was used. The nodes on the PC cluster are interconnected
through a 1000Base-T Gigabit Ethernet switch. LAM/MPI 7.1.1 was used as a
communication library., and Intel MKL 8.1 was used as a BLAS library. The
compiler used was gcc 4.0.2, and the optimization option was specified as “-O3”.
All programs were run in 64-bit mode.

For n = 10000, the proposed recursive CGS algorithm runs approximately
1.37 times faster than the naive implementation of the CGS algorithm using
Level-2 BLAS. As a result of cache blocking, the performance of the proposed
recursive CGS algorithm remains high, even for the larger problem size.

Note that on a 32-node Xeon 3.0GHz PC cluster, a performance of over
55GFLOPS was realized for a size of n = 40000.

References

1. Daniel, J., Gragg, W.B., Kaufman, L., Stewart, G.W.: Reorthogonalization and
stable algorithms for updating the Gram-Schmidt QR factorization. Math. Comput.
30 (1976) 772–795

2. Vanderstraeten, D.: A parallel block Gram-Schmidt algorithm with controlled loss of
orthogonality. In: Proc. Ninth SIAM Conference on Parallel Processing for Scientific
Computing. (1999)

3. Katagiri, T.: Performance evaluation of parallel Gram-Schmidt re-orthogonalization
methods. In: Proc. 5th International Meeting on High Performance Computing for
Computational Science (VECPAR 2002). Volume 2565 of Lecture Notes in Com-
puter Science., Springer-Verlag (2003) 302–314

4. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM Press, Philadel-
phia, PA (1996)

5. Dongarra, J.J., Duff, I.S., Sorensen, D.C., van der Vorst, H.A.: Numerical Linear
Algebra for High-Performance Computers. SIAM Press, Philadelphia, PA (1998)

6. Elmroth, E., Gustavson, F.G.: Applying recursion to serial and parallel QR factor-
ization leads to better performance. IBM J. Res. Develop. 44 (2000) 605–624

