Efficient Parallel Implementation of Classical
Gram-Schmidt Orthogonalization Using Matrix
Multiplication

Takuya Yokozawa, Daisuke Takahashi, Taisuke Boku and Mitsuhisa Sato

Graduate School of Systems and Information Engineering, University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
yokozawa@hpcs.cs.tsukuba.ac. jp
{daisuke,taisuke,msato}@cs.tsukuba.ac. jp

Extended Abstract

The Gram-Schmidt orthogonalization process is one of the fundamental algo-
rithms in linear algebra that implements the QR decomposition of a matrix into
the factorization A = QR. Efficient Gram-Schmidt orthogonalization algorithms
have been investigated thoroughly [1-3]. Two basic computational variants of the
Gram-Schmidt process exist: the classical Gram-Schmidt (CGS) algorithm and
the modified Gram-Schmidt (MGS) algorithm [4]. The modified Gram-Schmidt
(MGS) algorithm is often selected for practical application because it is much
more stable than the CGS algorithm. However, the MGS algorithm cannot be
expressed by Level-2 BLAS, and so parallel implementation requires additional
communication [5].

On the other hand, the CGS algorithm can be expressed by Level-2 BLAS
and is suitable for parallelization. Moreover, the CGS orthogonalization with the
DGKS correction [1] is one of the most efficient ways to perform the orthogo-
nalization process.

We present herein an efficient parallel implementation of the CGS orthogo-
nalization using matrix multiplication. The CGS orthogonalization of a matrix
can be changed into a matrix multiplication. The CGS orthogonalization can
also be extended with matrix multiplication into a recursive formulation. The
recursion leads to automatic variable blocking [6].

A recursive CGS algorithm to perform the QR decomposition is shown in
Fig. 1. Let the matrix A be denoted as A = (aiaz - ay) and the matrix @ be
denoted as @ = (q1qz2 - - - gn). Here, NB, S and w are the blocking size, the work
matrix and the work vector, respectively. The function recursive CGS(A, @, 0, n)
performs the orthogonalization process of matrix A. We parallelized the recursive
CGS algorithm using a column-wise distribution [3].

In order to evaluate the proposed recursive CGS algorithm, we compared
its performance to that of the proposed recursive CGS algorithm and a naive
implementation of the CGS algorithm using Level-2 BLAS. The CGS orthog-
onalization processes were performed on double-precision real data. A 32-node
Xeon PC cluster (Irwindale 3 GHz, 12 Kuops L1 instruction cache, 16 KB L1

2 Takuya Yokozawa, Daisuke Takahashi, Taisuke Boku and Mitsuhisa Sato

recursiveCGS(A, Q, k, m)
if (m <= NB) then
ar = qi/||qkl|
doj=k+1,k+m
doi=j+1,j+m
GEMV(QT ;, @i, w);
GEMV(Qj i, w, qi);
ai = qi/l|qil|
end do
end do
else
recursive CGS(A, Q, k, m/2);

GEMM(QY 4y /o Amyatims S
GEMM(S, Q, ktm/2s Qm/24+1,m)3
recursive CGS(A, Q, k +m/2, m/2);
end if
end

Fig. 1. Recursive classical Gram-Schmidt algorithm in the QR decomposition

data cache, 2MB L2 cache, 1 GB DDR2-400 SDRAM main memory per node,
Linux 2.6.16-1smp) was used. The nodes on the PC cluster are interconnected
through a 1000Base-T Gigabit Ethernet switch. LAM/MPI 7.1.1 was used as a
communication library., and Intel MKL 8.1 was used as a BLAS library. The
compiler used was gcc 4.0.2, and the optimization option was specified as “-03”.
All programs were run in 64-bit mode.

For n = 10000, the proposed recursive CGS algorithm runs approximately
1.37 times faster than the naive implementation of the CGS algorithm using
Level-2 BLAS. As a result of cache blocking, the performance of the proposed
recursive CGS algorithm remains high, even for the larger problem size.

Note that on a 32-node Xeon 3.0 GHz PC cluster, a performance of over
55 GFLOPS was realized for a size of n = 40000.

References

1. Daniel, J., Gragg, W.B., Kaufman, L., Stewart, G.W.: Reorthogonalization and
stable algorithms for updating the Gram-Schmidt QR factorization. Math. Comput.
30 (1976) 772795

2. Vanderstraeten, D.: A parallel block Gram-Schmidt algorithm with controlled loss of
orthogonality. In: Proc. Ninth STAM Conference on Parallel Processing for Scientific
Computing. (1999)

3. Katagiri, T.: Performance evaluation of parallel Gram-Schmidt re-orthogonalization
methods. In: Proc. 5th International Meeting on High Performance Computing for
Computational Science (VECPAR 2002). Volume 2565 of Lecture Notes in Com-
puter Science., Springer-Verlag (2003) 302-314

4. Bjorck, A.: Numerical Methods for Least Squares Problems. SIAM Press, Philadel-
phia, PA (1996)

5. Dongarra, J.J., Duff, I.S., Sorensen, D.C.; van der Vorst, H.A.: Numerical Linear
Algebra for High-Performance Computers. STAM Press, Philadelphia, PA (1998)

6. Elmroth, E., Gustavson, F.G.: Applying recursion to serial and parallel QR factor-
ization leads to better performance. IBM J. Res. Develop. 44 (2000) 605-624

