On finding approximate supernodes for an efficient ILU(k) factorization

PMAA'06
Rennes

P. Hénon, P. Ramet, J. Roman

LaBRI, UMR CNRS 5800, Université Bordeaux I \& ENSEIRB

Projet ScAIApplix, INRIA UR Futurs INRIA

Motivation of this work

- A popular choice as an algebraic preconditioner is an ILU(k) preconditioner (level-of-fill based inc. facto.)
- BUT
$>$ Parallelization is not easy
$>$ Scalar formulation does not take advantage of superscalar effect (i.e. BLAS)
=> Usually a low value of fill is used ($k=0$ or $k=1$)

Motivation of this work

ILU + Krylov Methods

Based on scalar implementation

Difficult to parallelize (mostly DD + Schwartz additive => \# of iterations depends on the number of processors)

Low memory consumption

Precision ~ 10^-5

Direct methods

BLAS3 (mostly DGEMM)
Thread/SMP, Load Balance...

Parallelization job is done (MUMPS, PASTIX, SUPERLU...)

High memory consumption : very large 3D problems are out of their league (100 millions unknowns)

Great precision ~ 10^-18

We want a trade-off !

Motivation of this work

Goal: we want to adapt a (supernodal) parallel direct solver (PaStiX) to build an incomplete block factorization and benefit from all the features that it provides:
$>$ Algorithmic is based on linear algebra kernels (BLAS)
$>$ Load-balancing and task scheduling are based on a fine modeling of computation and communication
$>$ Modern architecture management (SMP nodes) : hybrid Threads/MPI implementation

Outlines

- Which modifications in the direct solver?
- The symbolic incomplete factorization
- An algorithm to get dense blocks in ILU
- Experiments
- Conclusion

Direct solver chain (in PaStiX)

Analyze (sequential steps)
// fact. and solve

Direct solver chain (in PaStiX)

-Scotch: an hybrid algorithm

- incomplete Nested Dissection
- the resulting subgraphs being ordered with an Approximate Minimum Degree method under constraints (HAMD)

Direct solver chain (in PaStiX)

The symbolic block factorization

- $Q(G, P) \rightarrow Q(G, P)^{*}=Q\left(G^{*}, P\right)$
$=>$ linear in number of
blocks!
- Dense block structures \Rightarrow only a extra few pointers to store the matrix

Direct solver chain (in PaStiX)

Direct solver chain (in PaStiX)

- Modern architecture management (SMP nodes) : hybrid Threads/MPI implementation (all processors in the same SMP node work directly in share memory
$>$ Less MPI communication and lower the parallel memory overcost

Distributed incomplete factorized solverMatrix

Scotch

(ordering \& amalgamation)

Outlines

- Which modifications in the direct solver?
$>$ The symbolic incomplete factorization
- An algorithm to get dense blocks in ILU
- Experiments
- Conclusion

Level based ILU(k)

- Scalar formulation of the level-of-fill: Non zero entries of A have a level 0 .
Consider the elimination of the $\mathrm{k}^{\text {th }}$ unknowns during the fact. then:

Level(aij) $=$ MIN(level(aij) , level(aik)+level(akj)+1)
 $\mathrm{k} 1, \mathrm{k} 2, \mathrm{k} 3$ < i and j

Level based ILU(k)

- The scalar incomplete factorization have the same asymptotical complexity than the Inc. Fact.
- BUT: it requires much less CPU time
- D. Hysom and A. Pothen gives a practical algorithm that can be easily // (based on the search of eliminationk paths of length $<=k+1$) [Level Based Incompleted Factorization: Graphs model and Algorithm (2002)]

Level based ILU(k)

- In a FEM method a mesh node corresponds to several Degrees Of Freedom (DOF) and in this case we can use the node graph instead of the adj. graph of A i.e. :
$Q(G, P) \rightarrow Q(G, P)^{k}=Q\left(G^{k}, P\right) P=$ partition of mesh nodes
- This means the symbolic factorization will have a complexity in the respect of the number of nodes whereas the factorization has a complexity in respect to the number of DOF.

Outlines

- Which modifications in the direct solver?
- The symbolic incomplete factorization
$>$ An algorithm to get dense blocks in ILU
- Experiments
- Conclusion

How to build a dense block structure in ILU(k) factors?

- First step: find the exact supernode partition in the ILU(k) NNZ pattern
- In most cases, this partition is too refined (dense blocks are usually too small for BLAS3)
- Idea: we allow some extra fill-in in the symbolic factor to build a better block partition
$>$ Ex: How can we make bigger dense blocks if we allow 20\% more fill-in?

How to build a dense block structure in ILU(k) factors?

- We imposed some constraints:
> any permutation that groups columns with similar NNZ pattern should not affect \boldsymbol{G}^{k}
$>$ any permutation should not destroy the elimination tree structure
=> We impose the rule «merge only with your father... » for the supernode

Finding an approximated Supernodes Partition (amalgamation algorithm)

Finding an approximated Supernodes Partition (amalgamation algorithm)

While the fill-in tolerance α is respected do:
Merge the couple of supernodes that add the less extra fill-in

Finding an approximated Supernodes Partition (amalgamation algorithm)

Cost of the algorithm

- The approximate supernode merging algorithm is really cheap compare to the other steps
$>$ At each step: recompute fill-add for modified (son-father) couples and maintain the heap sort.
$>$ Complexity bound by $\mathrm{O}\left(\mathrm{D} . \mathrm{N}_{0}+\mathrm{N}_{0} . \log \left(\mathrm{N}_{0}\right)\right)$ N_{0} : number of exact supernodes in ILU factors D : maximum number of extradiagonal blocks in a blockcolumn

Numerical experiments

- Results on IBM power5 + Switch "Federation"
- All computations were performed in double precision
- Iterative accelerator was GMRES (no restart)
- Stopping criterion for iterative accelerators was a relative residual norm (||b-A.x||/||b||) of 1e-7

Test cases:

- AUDIKW_1 : Symmetric matrix (Parasol collection) $\mathrm{n}=943, \overline{9} 5 \mathrm{nnz}(\mathrm{A})=39,297,771$ With direct solver : $\mathrm{nnz}(\mathrm{L})=31 \times \mathrm{nnz}(\mathrm{A})$ total solution in 115 s on 16 procs
\rightarrow 3D
- SHIPSEC5 : Symmetric matrix (Parasol collection) $\mathrm{n}=179,860 \mathrm{nnz}(\mathrm{A})=4,966,618$
With direct solver : $n n z(\mathrm{~L})=11 \times \mathrm{nnz}(\mathrm{A})$ total solution in 7 s on 16 procs $\rightarrow 2$ D

Effect of amalgamation ratio a AUDIKW_1: $n=943,695$ nnzA=39,297,771

K	α	CBLK	BLOCKS	Amalg	Fact.	Tr. solve
1	0%	300,386	$11,893,366$	4.74	167.19	6.94
1	20%	133,102	$4,422,368$	8.18	71.72	4.67
1	40%	83,168	$2,564,865$	9.59	53.10	4.50
3	0%	292,096	$27,099,992$	8.63		
3	20%	85,759	$6,255,623$	14.18	293.33	7.96
3	40%	41,515	$2,278,474$	15.71	163.88	7.00
5	0%	275,012	$35,399,482$	11.04		
5	20%	62,203	$6,453,393$	17.23	518.57	8.86
5	40%	27,915	$1,890,939$	19.00	258.11	7.80

Sequential Time: total fact. + solve.

Res. precision= 1e-7

Number of Iterations

Parallel Time: AUDIKW_1

		1 processor			16 processors		
K	α	Fact	TR solv	Total	Fact	TR Solv	Total
1	20%	74.5	4.59	690.1	21.4	0.51	91.5
1	40%	56.4	4.44	620.3	12.7	0.42	67.0
3	20%	331.1	7.97	936.8	39.2	0.91	108.7
3	40%	194.6	7.57	732.0	18.6	0.66	65.7
5	20%	518.5	8.86	1058.9	52.3	1.16	123.1
5	40%	258.1	7.80	679.3	21.2	0.78	63.3

Sequential Time: total fact. + solve.

Number of Iterations

Conclusion

\Rightarrow This method provides an efficient parallel implementation of ILU(k) precon. (and does not depends on the numbers of proc.)
\Rightarrow The amalg. algorithm could be improved by relaxing the constraint of the «merge only with your father » but this requires further modifications in the solver chain.

Symbolic ILU(k) Audikw_1

Level of fill	Symb. Facto.	Num. Fact.
$\mathrm{K}=1$	16.8	74.97
$\mathrm{~K}=3$	73.8	466.94
$\mathrm{~K}=5$	131.11	1010.4

Direct solver chain (in PaStiX)

Analyze (sequential steps)
// fact. and solve

Direct solver chain (in PaStiX)

-Scotch: an hybrid algorithm

- incomplete Nested Dissection
- the resulting subgraphs being ordered with an Approximate Minimum Degree method under constraints (HAMD)

Direct solver chain (in PaStiX)

The symbolic block factorization

- $Q(G, P) \rightarrow Q(G, P)^{*}=Q\left(G^{*}, P\right)$
$=>$ linear in number of
blocks!
- Dense block structures \Rightarrow only a extra few pointers to store the matrix

Direct solver chain (in PaStiX)

Direct solver chain (in PaStiX)

- Modern architecture management (SMP nodes) : hybrid Threads/MPI implementation (all processors in the same SMP node work directly in share memory
$>$ Less MPI communication and lower the parallel memory overcost

(ordering \& amalgamation)

Distributed solution

Direct Factorization techniques

- Ordering to minimize fill-in and allow // is based upon ND
- Partition of supernodes P is found in $0(\mathrm{nnzA})$.
$Q(G, P) \rightarrow Q(G, P)^{*}=Q\left(G^{*}, P\right)$ => linear in number of blocks!
- Dense block structures \Rightarrow only a extra few pointers to store the matrix

Direct Factorization techniques

\Rightarrow Manage parallelism induced by sparsity (block elimination tree).
\Rightarrow Split and distribute the dense blocks in order to take into account the potential parallelism induced by dense computations.

