
On finding approximate supernodes
for an efficient ILU(k) factorization

PMAA’06
Rennes

P. Hénon, P. Ramet, J. Roman
LaBRI, UMR CNRS 5800, Université Bordeaux I & ENSEIRB

Projet ScAlApplix, INRIA UR Futurs

Motivation of this work

•• A A popularpopular choicechoice as an as an algebraicalgebraic preconditionerpreconditioner isis an an
ILU(k) ILU(k) preconditionerpreconditioner ((levellevel--ofof--fillfill basedbased incinc. . factofacto.).)

•• BUTBUT
ParallelizationParallelization isis notnot easyeasy

ScalarScalar formulation formulation doesdoes notnot taketake advantageadvantage ofof
superscalarsuperscalar effecteffect (i.e. BLAS) (i.e. BLAS)
=> => UsuallyUsually a a lowlow value value ofof fillfill isis usedused (k=0 or k=1)(k=0 or k=1)

Motivation of this work
ILU + Krylov ILU + Krylov MethodsMethods
BasedBased on on scalarscalar implementationimplementation

DifficultDifficult to to parallelizeparallelize ((mostlymostly DD + DD +
Schwartz additive => # Schwartz additive => # ofof
iterationsiterations dependsdepends on on thethe numbernumber
ofof processorsprocessors))

LowLow memorymemory consumptionconsumption

PrecisionPrecision ~ 10^~ 10^--5 5

Direct Direct methodsmethods

BLAS3 (BLAS3 (mostlymostly DGEMM)DGEMM)
ThreadThread/SMP, /SMP, LoadLoad BalanceBalance……

ParallelizationParallelization job job isis donedone (MUMPS, (MUMPS,
PASTIX, SUPERLUPASTIX, SUPERLU……))

HighHigh memorymemory consumptionconsumption : : veryvery
large 3D large 3D problemsproblems are out are out ofof theirtheir
leagueleague (100 millions (100 millions unknownsunknowns))

GreatGreat precisionprecision ~ 10^~ 10^--1818

We want a trade-off !

Motivation of this work
• Goal: we want to adapt a (supernodal) parallel direct solver

(PaStiX) to build an incomplete block factorization and
benefit from all the features that it provides:

Algorithmic is based on linear algebra kernels (BLAS)

Load-balancing and task scheduling are based on a fine
modeling of computation and communication

Modern architecture management (SMP nodes) : hybrid
Threads/MPI implementation

Outlines

• Which modifications in the direct solver?
• The symbolic incomplete factorization
• An algorithm to get dense blocks in ILU
• Experiments
• Conclusion

Direct solver chain (in PaStiX)

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Analyze (sequential steps) // fact. and solve

Direct solver chain (in PaStiX)

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Sparse matrix ordering (minimizes fill-in)
•Scotch: an hybrid algorithm

• incomplete Nested Dissection
• the resulting subgraphs being ordered with an
Approximate Minimum Degree method under
constraints (HAMD)

Direct solver chain (in PaStiX)

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

The symbolic block factorization
• Q(G,P)→Q(G,P)*=Q(G*,P)

=> linear in number of
blocks!

• Dense block structures
⇒ only a extra few pointers
to store the matrix

Direct solver chain (in PaStiX)

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution1 2 3 4 5 6 7 8

1 2 3 4 5 5 6 7 8

5
1 2 3 4 5 6 7 8

4 41 2 2 3 86 7
2 321 6 7 7

• Modern architecture management (SMP nodes) : hybrid
Threads/MPI implementation (all processors in the same
SMP node work directly in share memory
Less MPI communication and lower the parallel memory
overcost

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Direct solver chain (in PaStiX)

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

Distributed
solverMatrixgraph partition symbolMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Scotch
(ordering &

amalgamation)

iFax
(incomplete
block S.F.)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition
Distributed

solverMatrixsymbolMatrix

Distributed
incomplete
factorized

solverMatrix

Distributed
solution

C.G.
GMRES

Keep a N.D. ordering (NO RCM)

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

Distributed
solverMatrixgraph partition symbolMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Scotch
(ordering &

amalgamation)

iFax
(incomplete
block S.F.)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

partition symbolMatrix
Distributed

solverMatrixgraph

Distributed
incomplete
factorized

solverMatrix

Distributed
solution

C.G.
GMRES

Main modification

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Scotch
(ordering &

amalgamation)

iFax
(incomplete
block S.F.)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

symbolMatrix
Distributed

solverMatrixgraph partition

Distributed
incomplete
factorized

solverMatrix

Distributed
solution

C.G.
GMRES

Few modifications

Outlines

• Which modifications in the direct solver?
The symbolic incomplete factorization

• An algorithm to get dense blocks in ILU
• Experiments
• Conclusion

Level based ILU(k)
• Scalar formulation of the level-of-fill:

Non zero entries of A have a level 0.
Consider the elimination of the kth unknowns during the fact.
then:

Level(aij) = MIN(level(aij) , level(aik)+level(akj)+1)

akk

aik

akj

aij

ajj

aii

j
k1

Level 3

k2 k3

k1, k2, k3 < i and j

i

• The scalar incomplete factorization have the same
asymptotical complexity than the Inc. Fact.

• BUT: it requires much less CPU time

• D. Hysom and A. Pothen gives a practical algorithm that can
be easily // (based on the search of elimination paths of
length <= k+1) [Level Based Incompleted Factorization:
Graphs model and Algorithm (2002)]

ki

Level based ILU(k)

Level based ILU(k)

• In a FEM method a mesh node corresponds to several
Degrees Of Freedom (DOF) and in this case we can use the
node graph instead of the adj. graph of A i.e. :
Q(G,P)→Q(G,P)k=Q(Gk,P) P = partition of mesh nodes

• This means the symbolic factorization will have a complexity
in the respect of the number of nodes whereas the
factorization has a complexity in respect to the number of
DOF.

Outlines

• Which modifications in the direct solver?
• The symbolic incomplete factorization

An algorithm to get dense blocks in ILU
• Experiments
• Conclusion

How to build a dense block structure in
ILU(k) factors ?
• First step: find the exact supernode partition in the ILU(k)

NNZ pattern

• In most cases, this partition is too refined (dense blocks are
usually too small for BLAS3)

• Idea: we allow some extra fill-in in the symbolic factor to build
a better block partition
Ex: How can we make bigger dense blocks if we allow 20%
more fill-in ?

• We imposed some constraints:

any permutation that groups columns with similar NNZ
pattern should not affect Gk

any permutation should not destroy the elimination tree
structure

=> We impose the rule « merge only with your father… » for the
supernode

How to build a dense block structure
in ILU(k) factors ?

Finding an approximated Supernodes
Partition (amalgamation algorithm)

First step : find the exact supernode partition

Finding an approximated Supernodes
Partition (amalgamation algorithm)

=extra fill-in

While the fill-in tolerance α is respected do:
Merge the couple of supernodes that add the

less extra fill-in

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Need to update the « merge » cost of the son

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Need to update the « merge » cost of the father

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Finding an approximated Supernodes
Partition (amalgamation algorithm)

= zero entries

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Need to update the « merge » cost of the sons

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Need to update the « merge » cost of the father

Finding an approximated Supernodes
Partition (amalgamation algorithm)

Repeat while extra fill-in < tol

Cost of the algorithm

• The approximate supernode merging algorithm is really
cheap compare to the other steps

At each step: recompute fill-add for modified (son-father)
couples and maintain the heap sort.

Complexity bound by O(D.N0 + N0.Log(N0))
N0 : number of exact supernodes in ILU factors
D : maximum number of extradiagonal blocks in a block-
column

Numerical experiments

• Results on IBM power5 + Switch “Federation”

• All computations were performed in double precision

• Iterative accelerator was GMRES (no restart)

• Stopping criterion for iterative accelerators was a relative
residual norm (||b-A.x||/||b||) of 1e-7

Test cases:

• AUDIKW_1 : Symmetric matrix (Parasol collection)
n = 943,695 nnz(A) = 39,297,771
With direct solver : nnz(L) = 31 x nnz(A)

total solution in 115s on 16 procs
3D

• SHIPSEC5 : Symmetric matrix (Parasol collection)
n = 179,860 nnz(A) = 4,966,618
With direct solver : nnz(L) = 11 x nnz(A)

total solution in 7s on 16 procs
2D

Effect of amalgamation ratio α
AUDIKW_1: n = 943,695 nnzA=39,297,771
K α CBLK BLOCKS Amalg Fact. Tr. solve

1 0% 300,386 11,893,366 4.74 167.19 6.94

3 0% 292,096 27,099,992 8.63

5 0% 275,012 35,399,482 11.04

1 20 % 133,102 4,422,368 8.18 71.72 4.67

1 40 % 83,168 2,564,865 9.59 53.10 4.50

3 20 % 85,759 6,255,623 14.18 293.33 7.96

3 40 % 41,515 2,278,474 15.71 163.88 7.00

5 20 % 62,203 6,453,393 17.23 518.57 8.86

5 40 % 27,915 1,890,939 19.00 258.11 7.80

AUDIKW_1 (1 proc PWR5)

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14

Fill-in [x NNZ(A)]

Ti
m

e
[s

ec
on

ds
]

k=1
k=3
k=5
scalar

Sequential Time: total fact. + solve.
Res. precision= 1e-7

0% 40% 10%
40% 10% 40%

Number of Iterations

AUDIKW_1 (1 proc PWR5)

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14

Fill-in [x NNZ(A)]

N
um

be
r o

f i
te

ra
tio

ns

k=1
k=3
k=5
scalar

Parallel Time: AUDIKW_1

1 processor 16 processors

K α Fact TR solv Total Fact TR Solv Total

1 20 % 74.5 4.59 690.1 21.4 0.51 91.5

1 40 % 56.4 4.44 620.3 12.7 0.42 67.0

3 20 % 331.1 7.97 936.8 39.2 0.91 108.7

3 40 % 194.6 7.57 732.0 18.6 0.66 65.7

5 20 % 518.5 8.86 1058.9 52.3 1.16 123.1

5 40 % 258.1 7.80 679.3 21.2 0.78 63.3

Sequential Time: total fact. + solve.

Matrix SHIPSEC5

0

10

20

30

40

50

60

0 1 2 3 4 5 6

Fill-in [x NNZ(A)]

Ti
m

e
[s

ec
on

ds
]

k=1
k=3
k=5
scalar

Number of Iterations

Matrix SHIPSEC5

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6

Fill-in [x NNZ(A)]

N
um

be
r o

f i
te

ra
tio

ns

k=1
k=3
k=5
scalar

Conclusion

⇒This method provides an efficient parallel
implementation of ILU(k) precon. (and does
not depends on the numbers of proc.)

⇒The amalg. algorithm could be improved by
relaxing the constraint of the « merge only
with your father » but this requires further
modifications in the solver chain.

Symbolic ILU(k) Audikw_1

Level of fill Symb. Facto. Num. Fact.

K=1 16.8 74.97

K=3 73.8 466.94

K=5 131.11 1010.4

Direct solver chain (in PaStiX)

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Analyze (sequential steps) // fact. and solve

Direct solver chain (in PaStiX)

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Sparse matrix ordering (minimizes fill-in)
•Scotch: an hybrid algorithm

• incomplete Nested Dissection
• the resulting subgraphs being ordered with an
Approximate Minimum Degree method under
constraints (HAMD)

Direct solver chain (in PaStiX)

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

The symbolic block factorization
• Q(G,P)→Q(G,P)*=Q(G*,P)

=> linear in number of
blocks!

• Dense block structures
⇒ only a extra few pointers
to store the matrix

Direct solver chain (in PaStiX)

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution1 2 3 4 5 6 7 8

1 2 3 4 5 5 6 7 8

5
1 2 3 4 5 6 7 8

4 41 2 2 3 86 7
2 321 6 7 7

• Modern architecture management (SMP nodes) : hybrid
Threads/MPI implementation (all processors in the same
SMP node work directly in share memory
Less MPI communication and lower the parallel memory
overcost

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Direct solver chain (in PaStiX)

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

Distributed
solverMatrixgraph partition symbolMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Scotch
(ordering &

amalgamation)

iFax
(incomplete
block S.F.)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition
Distributed

solverMatrixsymbolMatrix

Distributed
incomplete
factorized

solverMatrix

Distributed
solution

C.G.
GMRES

Keep a N.D. ordering

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

Distributed
solverMatrixgraph partition symbolMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Scotch
(ordering &

amalgamation)

iFax
(incomplete
block S.F.)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

partition symbolMatrix
Distributed

solverMatrixgraph

Distributed
incomplete
factorized

solverMatrix

Distributed
solution

C.G.
GMRES

Main modification

Scotch
(ordering &

amalgamation)

Fax
(block symbolic

factorization)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

graph partition symbolMatrix
Distributed

solverMatrix

Distributed
factorized

solverMatrix

Distributed
solution

Scotch
(ordering &

amalgamation)

iFax
(incomplete
block S.F.)

Blend
(refinement &

mapping)

Sopalin
(factorizing &

solving)

symbolMatrix
Distributed

solverMatrixgraph partition

Distributed
incomplete
factorized

solverMatrix

Distributed
solution

C.G.
GMRES

Few modifications

Direct Factorization techniques

• Ordering to minimize fill-in and allow // is based upon ND
• Partition of supernodes P is found in 0(nnzA).
• Q(G,P)→Q(G,P)*=Q(G*,P)

=> linear in number of blocks!
• Dense block structures

⇒ only a extra few pointers
to store the matrix

Direct Factorization techniques

⇒ Manage parallelism induced by sparsity (block
elimination tree).

⇒ Split and distribute the dense blocks in order to take
into account the potential parallelism induced by
dense computations .

	On finding approximate supernodes�for an efficient ILU(k) factorization�
	Motivation of this work
	Motivation of this work
	Motivation of this work
	Outlines
	Direct solver chain (in PaStiX)
	Direct solver chain (in PaStiX)
	Direct solver chain (in PaStiX)
	Direct solver chain (in PaStiX)
	Direct solver chain (in PaStiX)
	Outlines
	Level based ILU(k)
	Level based ILU(k)
	Level based ILU(k)
	Outlines
	How to build a dense block structure in ILU(k) factors ?
	How to build a dense block structure in ILU(k) factors ?
	Finding an approximated Supernodes�Partition (amalgamation algorithm)
	Finding an approximated Supernodes�Partition (amalgamation algorithm)
	Finding an approximated Supernodes�Partition (amalgamation algorithm)
	Finding an approximated Supernodes�Partition (amalgamation algorithm)
	Finding an approximated Supernodes�Partition (amalgamation algorithm)
	Finding an approximated Supernodes�Partition (amalgamation algorithm)
	Finding an approximated Supernodes�Partition (amalgamation algorithm)
	Finding an approximated Supernodes�Partition (amalgamation algorithm)
	Finding an approximated Supernodes�Partition (amalgamation algorithm)
	Finding an approximated Supernodes�Partition (amalgamation algorithm)
	Finding an approximated Supernodes�Partition (amalgamation algorithm)
	Cost of the algorithm
	Numerical experiments
	Test cases:
	Effect of amalgamation ratio α �AUDIKW_1: n = 943,695 nnzA=39,297,771�
	Sequential Time: total fact. + solve.�Res. precision= 1e-7
	Number of Iterations
	Parallel Time: AUDIKW_1
	Sequential Time: total fact. + solve.
	Number of Iterations
	Conclusion
	Symbolic ILU(k) Audikw_1
	Direct solver chain (in PaStiX)
	Direct solver chain (in PaStiX)
	Direct solver chain (in PaStiX)
	Direct solver chain (in PaStiX)
	Direct solver chain (in PaStiX)
	Direct Factorization techniques �
	Direct Factorization techniques �

