Algebraic multilevel preconditioners on massively parallel computers

Gérard MEURANT CEA/DIF

September 2, 2006

We would like to solve large sparse linear systems on parallel computer in a scalable way

Ax = b

with A a nonsingular sparse matrix of order n, n may be several tens or hundreds millions

We use Krylov iterative methods with algebraic multigrid preconditioners

Today, we will concentrate on symmetric systems using CG

Algebraic multilevel preconditioners

Ax = b

A symmetric positive definite \Rightarrow PCG

For PCG to be scalable the preconditioner must be s.t.:

- the number of iterations is (almost) constant when the size of the problem increases
- the complexity of applying the preconditioner is proportional to \boldsymbol{n}

Algebraic multigrid was introduced by J. Ruge and K. Stuben (1985)

It mimics geometric multigrid

A "grid" \equiv (sub)space of unknowns (vertices) of the matrix graph

 The main difficulty is to have a method both efficient and parallel

Multilevel preconditioners (V-cycle)

Starting from the null vector :

- 0- on the coarsest level, solve exactly using Gauss, otherwise
- 1– Do ν smoothing iterations
- 2– Restrict the residual r to $r_c = Rr$ (next coarse level)
- 3- Recursively solve $A_c e_c = r_c$, $A_c = RAP$, $R = P^T$
- 4– Interpolate e_c to $e = Pe_c$ (next fine level)
- 5– Add the correction e to the current iterate
- 6– Do ν smoothing iterations

Smoothers

- o symmetric Gauss-Seidel (not //)
- \circ incomplete Cholesky (not //) LDL^T
 - -IC(0)
 - IC with fill-in (values)
 - IC with fill-in (levels)

$$LD^{-1}L^{T}(x^{k+1} - x^{k}) = b - Ax^{k}$$

• Approximate inverse AINV from M. Benzi (Emory Univ.) and al.

 $M \approx A^{-1}, \quad M = ZD^{-1}Z^T$

where Z is upper triangular with 1 on the diagonal and D is diagonal

The parameter τ defines which elements are kept in Z as the factorization (by columns) proceeds

It works for H–matrices, for SPD matrices one uses SAINV (Stabilized AINV)

Smoother: Richardson iteration defined as

$$x^{k+1} = x^k + M(b - Ax^k)$$

Influence matrix

How to define the coarse levels?

$$\mathcal{N} = \{1, \dots, n\}, \quad \mathcal{N} = F \cup C$$

Set of indices: standard AMG choice (Ruge-Stuben) for M-matrices

i is a row index

$$S_i = \{j | -a_{i,j} > \theta \max_{k \neq i} (-a_{i,k}), \quad \theta < 1\}$$

From S_i we construct S (matrix with 1 and 0 elements)

General case

$$S_i^A = \{ j \neq i \mid |a_{i,j}| > \tau \max_k |a_{i,k}|, \quad \tau < 1 \}$$

We keep at least one 1 for the largest modulus element ('b')

au parameter to be chosen

It is usually better to symmetrically normalize the matrix

Coarsening algorithm

The "standard" algorithm is:

Weights $w_i = nb$ of points which depend on *i* (using *S*)

- 1- Choose a point i of maximal weight as a C point
- 2- Flag the points that i influences (with S) as F points

3- Add 1 to the weights of points influencing these new F points (to give them a better chance to be chosen as C points in the next steps)

4- Decrease by 1 the weights of points that depend on i

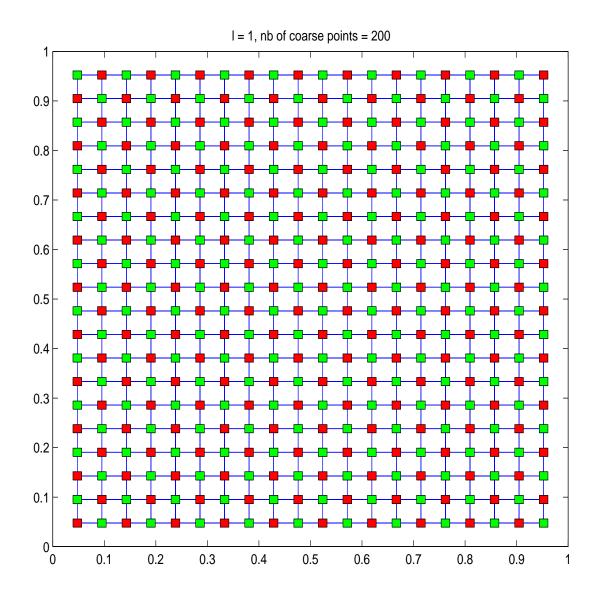
Repeat steps 1-4 until all the points are labelled

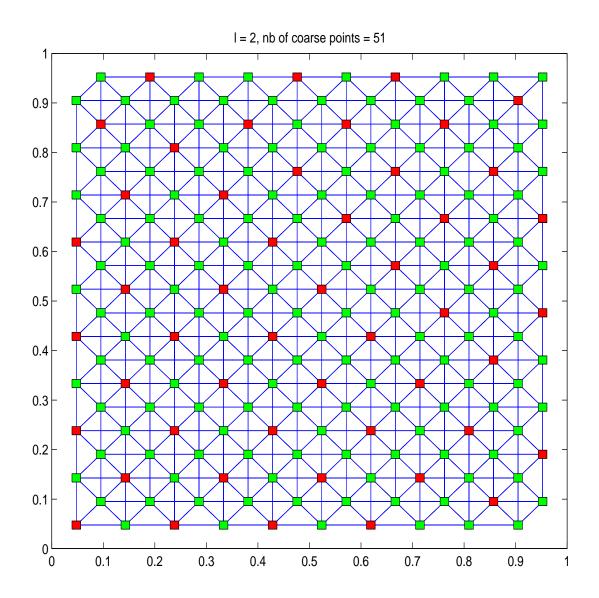
Example: Poisson equation in a square, 5-point finite differences, n = 400

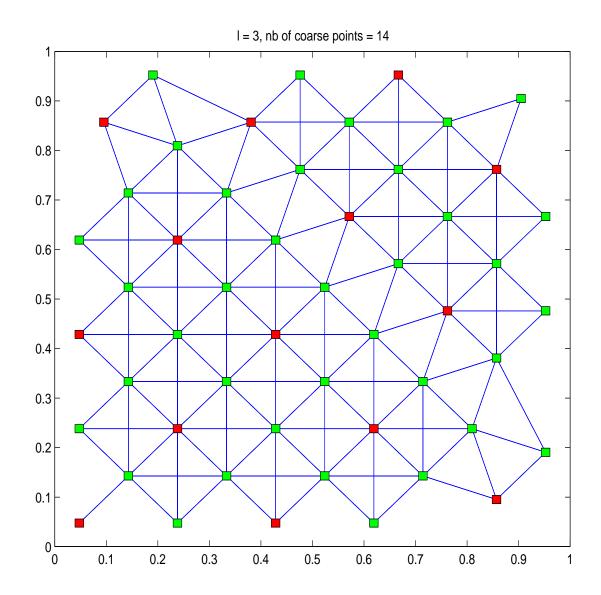
The graph of A is the same as the mesh

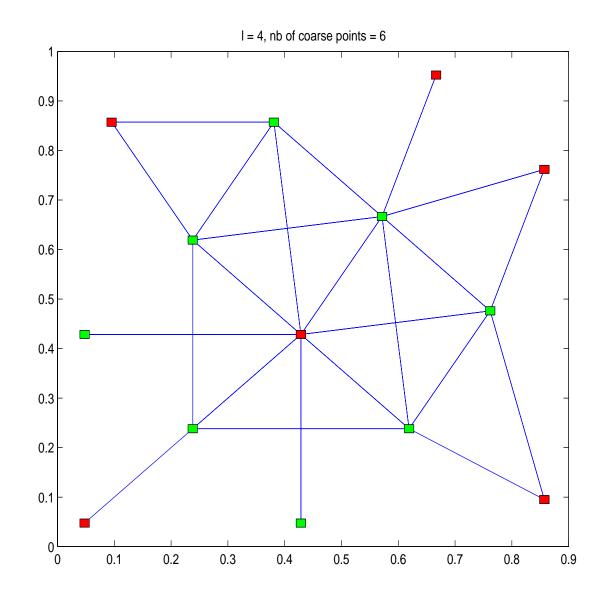
The matrix is normalized with ones on the diagonal

graphs and C and F points for all levels









Interpolation algorithm

• $i \in F, j \in C$

$$\omega_{i,j} = -\frac{a_{i,j} + \sum_{k \in D_i^S} \frac{a_{i,k} a_{k,j}}{\sum_{m \in C_i} a_{k,m}}}{a_{i,i} + \sum_{k \in D_i^W} a_{i,k}}$$

 D_i^S and D_i^W are strong and weak couplings

This comes from writing Ae = 0 and using $e_j \approx e_i$ for weak connections and a weighted average for connections with F points

Coarse matrices

The interpolation algorithm defines P and $R = P^T$

 $A_C = RAP$

How to parallelize the smoothers?

Domain decomposition

• Partition the graph of A (or sometimes S) with or without overlapping (ghost nodes)

• symmetric Gauss–Seidel

parallelized by using Jacobi for interface nodes (SGSJ)

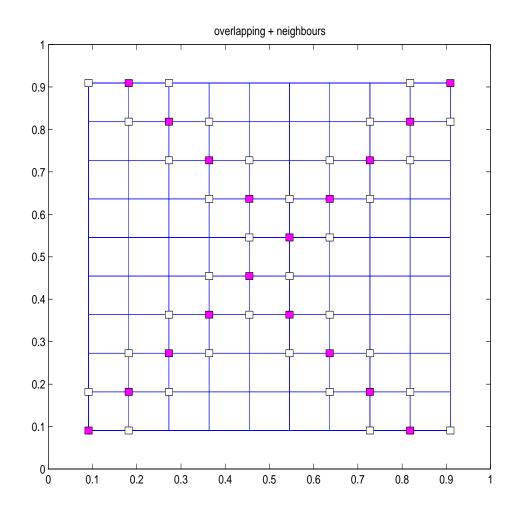
incomplete Cholesky or AINV

parallelized by ignoring dependencies between subdomains (ICp, SAINVp)

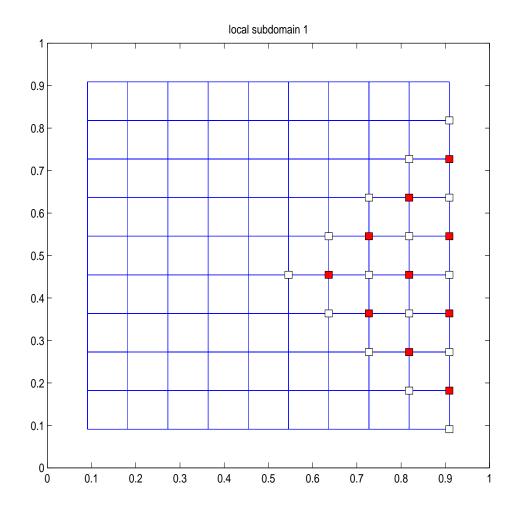
Only the finest level is partitioned, this may cause load balancing problems on coarse levels

Parallel coarsening

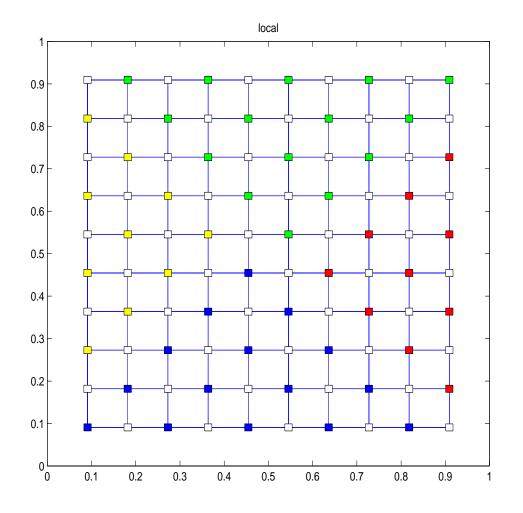
- LLNL algorithms (Cleary, Falgout, Henson and Jones)
- They start on several "independent" nodes at the same time
- \circ Other method :
- Start by coarsening the overlapping or the interface
- Flag the (subdomain) neighbors of these C points as F points (without introducing F F connections)
- Coarsen the subdomains using the preceding step as "boundary conditions"



Interface (magenta) + neighbors (white), 4 subdomains



First subdomain



Global result, 4 subdomains

Numerical results

5 point finite differences, unit square, $m\times m$ mesh

```
b random, x^0 = 0
```

```
stopping criterion: ||r^k|| \le 10^{-10} ||r^0||
```

Small sequential problems

PCG, Poisson, $\tau=0.06,$ ('ic', 'a', 'st', 'st'), $\gamma=1$

m	$\nu = 1$	$\nu = 2$
40	5	5
	op=1598145, /n=998.8	op=2631408, /n=1644
	str=35667, /n=22.3	
	$\kappa = 1.03$	$\kappa = 1.01$
50	5	5
	op=2528438, /n=1011	op=4165773, /n=1666
	str=56497, /n=22.6	
	$\kappa = 1.02$	$\kappa = 1.01$
60	6	5
	op=4265230, /n=1185	op=6008813, /n=1669
	str=81388, /n=22.6	
	$\kappa = 1.03$	$\kappa = 1.01$

 \circ Parallel version with no fill—in between subdomains, incomplete Cholesky

PCG, Poisson, m = 40, $\tau = 0.05$, ('id', 'b', 'sd', 'st'), without F - F connections on the fine level

nb sd	nb it	flops	storage
1	5	1 598 253	35 550
2	8	2 484 338	36 790
4	7	2 186 602	36 555
8	8	2 517 864	37 529
16	9	2 824 986	37 545
32	11	3 586 071	34 670

 \circ AINV

PCG, Poisson, m = 40, $\tau = 0.05$, ('ad', 'b', 'sd', 'st') without F - F connections on the fine level

nb sd	nb it	flops	storage
1	14	3 929 793	36 005
2	15	4 277 693	36 882
4	14	3 971 013	36 611
8	13	3 749 853	37 236
16	12	3 502 164	37 133
32	12	3 750 659	34 536

```
Numerical results on the CEA TERA 1
(HP-Compaq, Alpha EV6 processors 1Ghz)
```

5 (7) point finite differences, unit square (cube), $m \times m$ mesh, b random

 $x^{0} = 0$

stopping criterion $||r^k|| \leq 10^{-10} ||r^0||$

Domain decomposition with squares (cubes), $m_p^{2(3)}$ unknowns per processor

• A is distributed by rows

- Poisson equation
- Diffusion problem with discontinuous and anisotropic coeff Partition of $[0,1]^2$ in 4 squares diffusion coeff (1,1), (10,100), (100,10), (1000,1000)

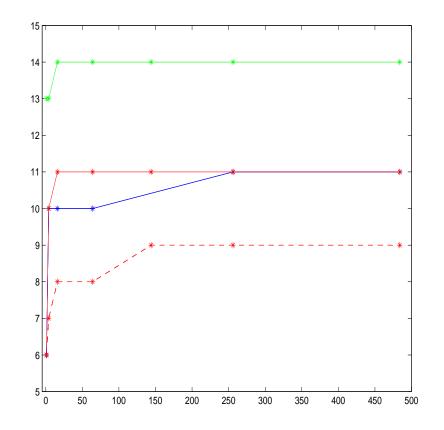
First experiment

• Poisson

 $m_p = 250 \rightarrow 62500$ unknowns per processor,

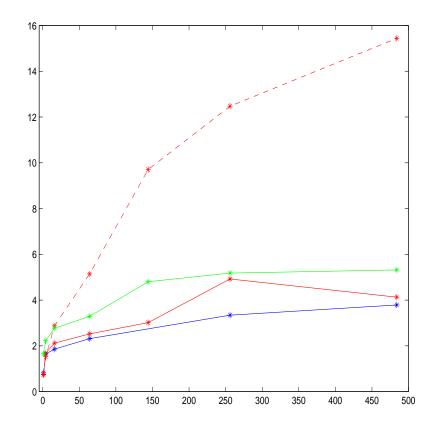
p = 1, 4, 16, 64, 144, 256, 484

• largest problem has $\simeq 30~10^6$ unknowns



Nb of iterations for Poisson as a function of \boldsymbol{p}

coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp



"elapsed" time (s) for Poisson as a function of \boldsymbol{p}

coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

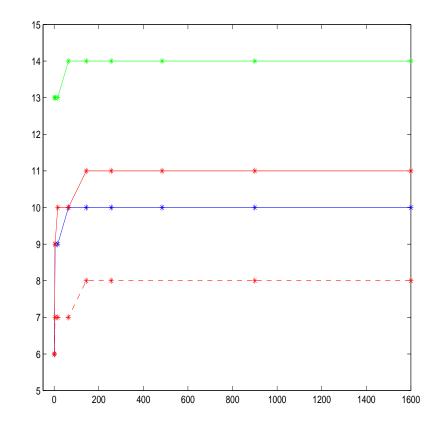
Second experiment

• Poisson

 $m_p = 100 \rightarrow 10000$ unknowns per processor

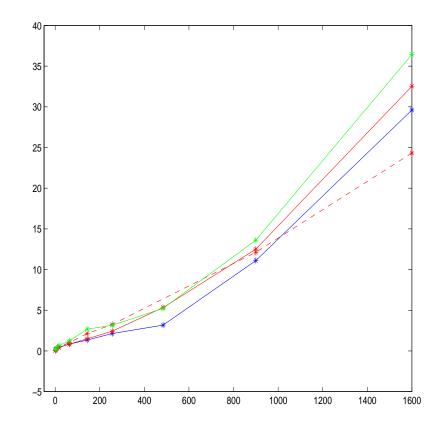
p=1,4,16,64,144,256,484,900,1600

• Largest problem has $16 \ 10^6$ unknowns



Nb of iterations for Poisson as a function of \boldsymbol{p}

coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp



"elapsed" time (s) for Poisson as a function of p

coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

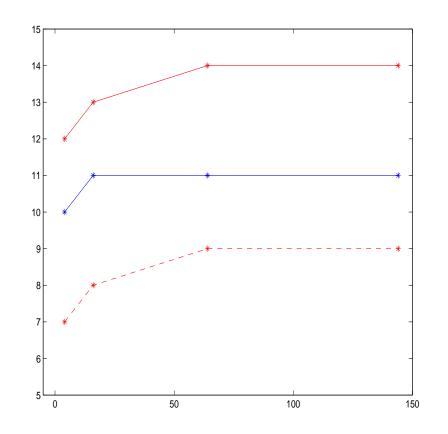
Third experiment

• Discontinuous and anisotropic problem

 $m_p = 250 \rightarrow 62500$ unknowns per processor

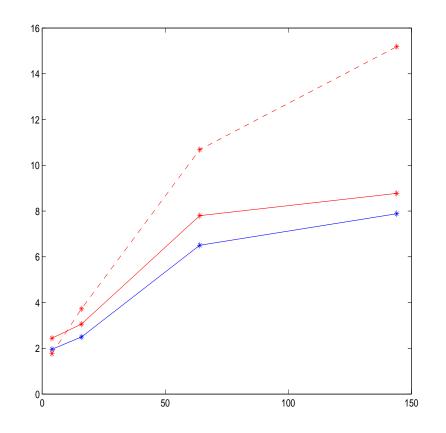
p = 4, 16, 64, 144

• Largest problem has $4 \ 10^6$ unknowns



Nb of iterations for the discontinuous and anisotropic pb as a function of \boldsymbol{p}

coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp



"elapsed" time (s) for the discontinuous and anisotropic pb as a function of \boldsymbol{p}

coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp

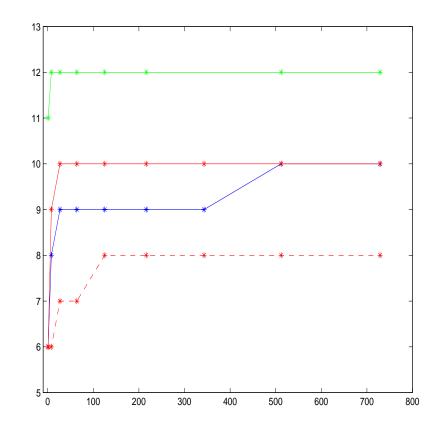
Fourth experiment

• 3D Poisson in $[0,1]^3$

 $m_p = 30 \rightarrow m_p^3 = 27000$ unknowns per processor,

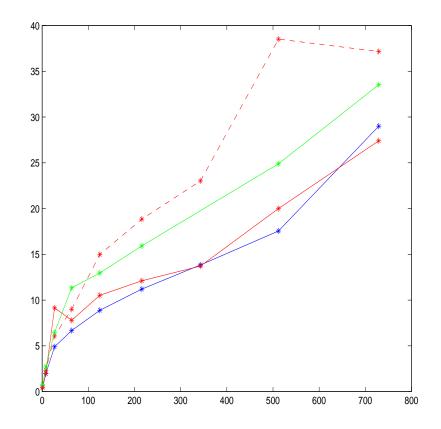
p=1, 8, 27, 64, 125, 216, 343, 512, 729

• Largest problem has $\simeq 20~10^6$ unknowns



Nb of iterations for 3D Poisson as a function of \boldsymbol{p}

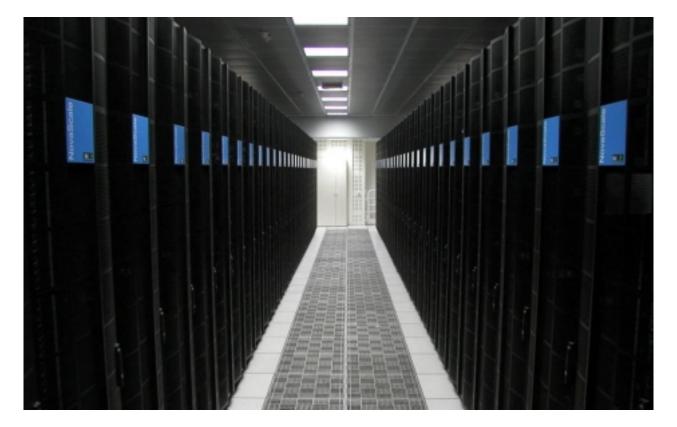
coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

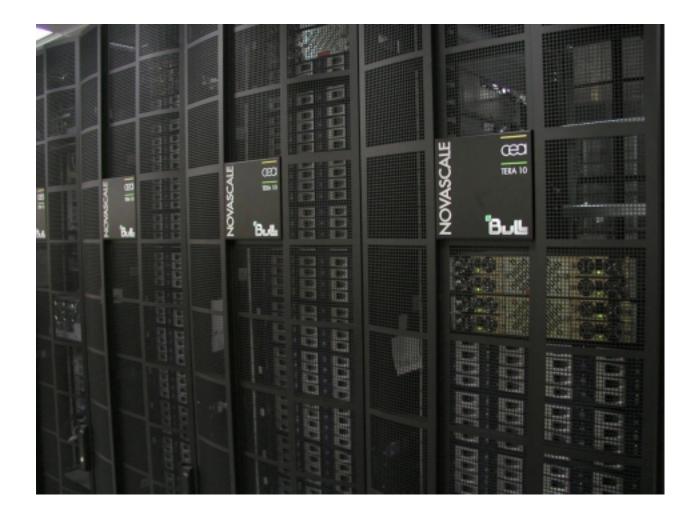


"elapsed" time (s) for 3D Poisson as a function of \boldsymbol{p}

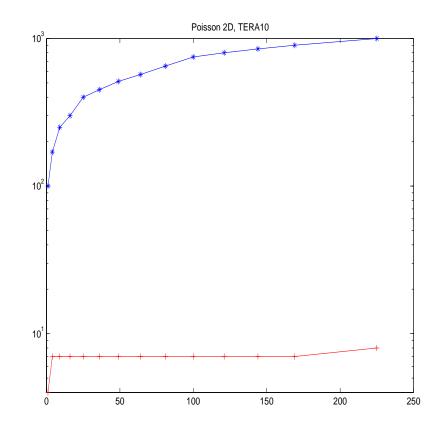
coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

The CEA TERA 10 parallel computer



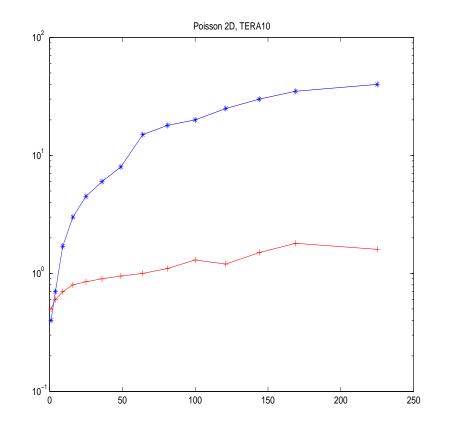


	TERA-1	TERA-10
Processor	Alpha EV6 - 1 Ghz	Intel Montecito - 1.6 Ghz
Node	4 processors	16 cores (8 Montecito)
Memory per node	4 GB - 16 GB - 32 GB	48 GB - 128 GB
Peak performance	8 Gflops	> 100 Gflops
Interconnexion	2 "rails" ELAN - 3	3 "rails" ELAN - 4
Network		
Network	Latency 5 us - Links 400 MB/s	Latency 4 us - Links 900 MB/s
Numberofnodes	608	544
Peak performance	5 Tflops	> 60 Tflops
Sustained performance	1.35 Tflops	12.5 Tflops
Memory size	3 TB	30 TB
Disk space	50 TB	1 PB
Disk bandwidth	7.5 GB/s	100 GB/s
0		2010 4 5 4 6 2 5
Storage network	32 HiPPI links (800 Mbits/s)	20 IB 4x links (1 GB/s)
Useraccess	20 1 Gbits links	10 10 Gbits links



Nb of iterations for 2D Poisson as a function of \boldsymbol{p}

TERA10, red: AMG, blue: IC, 10 000 unkn/p



Elapsed time (s) for 2D Poisson as a function of p

TERA10, red: AMG, blue: IC, 10 000 unkn/p

Extension to block matrices

Goal: solve linear systems arising from PDE systems (several unknowns per element or node)

Example: 3 temperature radiative transfer model

$$\rho \frac{\partial E_i(T_i)}{\partial t} = \operatorname{div}(K_i \nabla T_i) + \alpha (T_e - T_i),$$

$$\rho \frac{\partial E_e(T_e)}{\partial t} = \operatorname{div}(K_e \nabla T_e) - \alpha (T_e - T_i) - c(a\sigma_E T_e^4 - \sigma_A T_r^4),$$

$$\rho \frac{\partial a T_r^4}{\partial t} = \operatorname{div}(K_r \nabla a T_r^4) + c(a\sigma_E T_e^4 - \sigma_A T_r^4).$$

Unknowns are T_e, T_i, T_r (ρ is known)

This is a system of nonlinear PDEs whose behavior depends on the relative values of diffusion and relaxation terms

Using finite volumes, one obtains a nonlinear system with $3\times N$ unknowns which is linearized with the Newton's method

We can solve these systems with a (point) multilevel preconditioner

However, results are not always so good

This motivated the development of a block extension of the AMG preconditioner

In our example, blocks are 3×3

Smoothers

• iterations of (symmetric) block Gauss–Seidel/Jacobi Small $p \times p$ systems are solved by Gaussian elimination

block IC/ILU

Influence matrix

Define influences between blocks:

block I depends on block J (J influences I) if

 $||A_{I,J}||_F \ge \tau \max_{K \ne I} ||A_{I,K}||_F$

This gives S of order n/size of blocks

Coarsening

The (block) graph of A is coarsened using S with the same algorithms as in the point case

Interpolation P

Interpolation is done component by component:

$$e_I = \sum_{J \in C_I} W_{I,J} e_J,$$

 C_I : coarse nodes influencing I, $W_{I,J}$ diagonal $p \times p$ matrix, no coupling between different types of unknowns

Use the same formula as in the point case

 $R = P^T$

$$A_{grossier} = RAP$$

This couples the unknowns

Model problem

Block 5-diagonal symmetric matrix with 3×3 blocks

Constant diffusion and relaxation coefficients

Diagonal blocks:

$$\begin{pmatrix} 4\alpha + \mu h^2 & -\mu h^2 & 0\\ -\mu h^2 & 4\alpha + (\mu + \sigma)h^2 & -\sigma h^2\\ 0 & -\sigma h^2 & 4\alpha + \sigma h^2 \end{pmatrix}$$

Nonzero nondiagonal blocks are $-\alpha I_3$, h = 1/(m+1)

$$\alpha = 1, \mu = 10, \sigma = 200$$

m	n	nb it block GS	nb it block IC
10	300	6	5
20	1200	7	6
30	2700	7	6
40	4800	7	6
50	7500	7	6

Conclusions

- These multilvel preconditioners are (almost) scalable
- Drawback: setup phase is "expensive"
- They are useful only for difficult and/or very large problems