
Algebraic multilevel preconditioners on
massively parallel computers

Gérard MEURANT
CEA/DIF

September 2, 2006

0-0



We would like to solve large sparse linear systems on parallel

computer in a scalable way

Ax = b

with A a nonsingular sparse matrix of order n, n may be

several tens or hundreds millions

We use Krylov iterative methods with algebraic multigrid

preconditioners

Today, we will concentrate on symmetric systems using CG



Algebraic multilevel preconditioners



Ax = b

A symmetric positive definite ⇒ PCG

For PCG to be scalable the preconditioner must be s.t.:

• the number of iterations is (almost) constant when the size
of the problem increases

• the complexity of applying the preconditioner is proportional
to n



Algebraic multigrid was introduced by J. Ruge and K. Stuben

(1985)

It mimics geometric multigrid

A “grid” ≡ (sub)space of unknowns (vertices) of the matrix

graph

• The main difficulty is to have a method both efficient and
parallel



Multilevel preconditioners (V-cycle)

Starting from the null vector :

0– on the coarsest level, solve exactly using Gauss, otherwise

1– Do ν smoothing iterations

2– Restrict the residual r to rc = Rr (next coarse level)

3– Recursively solve Acec = rc, Ac = RAP , R = PT

4– Interpolate ec to e = Pec (next fine level)

5– Add the correction e to the current iterate

6– Do ν smoothing iterations



Smoothers

◦ symmetric Gauss–Seidel (not //)
◦ incomplete Cholesky (not // ) LDLT

– IC(0)

– IC with fill–in (values)

– IC with fill–in (levels)

LD−1LT (xk+1 − xk) = b−Axk



◦ Approximate inverse AINV from M. Benzi (Emory Univ.)

and al.

M ≈ A−1, M = ZD−1ZT

where Z is upper triangular with 1 on the diagonal and D is

diagonal

The parameter τ defines which elements are kept in Z as the

factorization (by columns) proceeds

It works for H–matrices, for SPD matrices one uses SAINV

(Stabilized AINV)

Smoother: Richardson iteration defined as

xk+1 = xk +M(b−Axk)



Influence matrix

How to define the coarse levels?

N = {1, . . . , n}, N = F ∪ C

Set of indices: standard AMG choice (Ruge-Stuben) for

M–matrices

i is a row index

Si = {j| − ai,j > θmax
k �=i

(−ai,k), θ < 1}

From Si we construct S (matrix with 1 and 0 elements)



General case

SA
i = {j �= i | |ai,j | > τ max

k
|ai,k|, τ < 1}

We keep at least one 1 for the largest modulus element (’b’)

τ parameter to be chosen

It is usually better to symmetrically normalize the matrix



Coarsening algorithm

The “standard” algorithm is:

Weights wi = nb of points which depend on i (using S)

1- Choose a point i of maximal weight as a C point

2- Flag the points that i influences (with S) as F points

3- Add 1 to the weights of points influencing these new F

points (to give them a better chance to be chosen as C

points in the next steps)

4- Decrease by 1 the weights of points that depend on i

Repeat steps 1-4 until all the points are labelled



Example: Poisson equation in a square, 5-point finite

differences, n = 400

The graph of A is the same as the mesh

The matrix is normalized with ones on the diagonal

graphs and C and F points for all levels



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
l = 1, nb of coarse points = 200



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
l = 2, nb of coarse points = 51



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
l = 3, nb of coarse points = 14



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
l = 4, nb of coarse points = 6



Interpolation algorithm

◦ i ∈ F , j ∈ C

ωi,j = −
ai,j +

∑
k∈DS

i

ai,kak,j∑
mεCi

ak,m

ai,i +
∑

k∈DW
i
ai,k

DS
i and DW

i are strong and weak couplings

This comes from writing Ae = 0 and using ej ≈ ei for weak

connections and a weighted average for connections with F

points

Coarse matrices

The interpolation algorithm defines P and R = PT

AC = RAP



How to parallelize the smoothers?

Domain decomposition

◦ Partition the graph of A (or sometimes S) with or without

overlapping (ghost nodes)

◦ symmetric Gauss–Seidel
parallelized by using Jacobi for interface nodes (SGSJ)

◦ incomplete Cholesky or AINV

parallelized by ignoring dependencies between subdomains

(ICp, SAINVp)

Only the finest level is partitioned, this may cause load

balancing problems on coarse levels



Parallel coarsening

◦ LLNL algorithms (Cleary, Falgout, Henson and Jones)

• They start on several “independent” nodes at the same
time

◦ Other method :
• Start by coarsening the overlapping or the interface
• Flag the (subdomain) neighbors of these C points as F

points (without introducing F − F connections)

• Coarsen the subdomains using the preceding step as
“boundary conditions”



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
overlapping + neighbours

Interface (magenta) + neighbors (white), 4 subdomains



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
local subdomain 1

First subdomain



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
local

Global result, 4 subdomains



Numerical results

5 point finite differences, unit square, m×m mesh

b random, x0 = 0

stopping criterion: ‖rk‖ ≤ 10−10‖r0‖

Small sequential problems



PCG, Poisson, τ = 0.06, (‘ic’, ‘a’, ‘st’, ‘st’), γ = 1

m ν = 1 ν = 2

40 5 5

op=1598145, /n=998.8 op=2631408, /n=1644

str=35667, /n=22.3

κ = 1.03 κ = 1.01

50 5 5

op=2528438, /n=1011 op=4165773, /n=1666

str=56497, /n=22.6

κ = 1.02 κ = 1.01

60 6 5

op=4265230, /n=1185 op=6008813, /n=1669

str=81388, /n=22.6

κ = 1.03 κ = 1.01



◦ Parallel version with no fill–in between subdomains,
incomplete Cholesky

PCG, Poisson, m = 40, τ = 0.05, (‘id’, ‘b’, ‘sd’, ‘st’), without
F − F connections on the fine level

nb sd nb it flops storage

1 5 1 598 253 35 550

2 8 2 484 338 36 790

4 7 2 186 602 36 555

8 8 2 517 864 37 529

16 9 2 824 986 37 545

32 11 3 586 071 34 670



◦ AINV
PCG, Poisson, m = 40, τ = 0.05, (‘ad’, ‘b’, ‘sd’, ‘st’) without
F − F connections on the fine level

nb sd nb it flops storage

1 14 3 929 793 36 005

2 15 4 277 693 36 882

4 14 3 971 013 36 611

8 13 3 749 853 37 236

16 12 3 502 164 37 133

32 12 3 750 659 34 536



Numerical results on the CEA TERA 1

(HP-Compaq, Alpha EV6 processors 1Ghz)

5 (7) point finite differences, unit square (cube), m×m mesh,

b random

x0 = 0

stopping criterion ‖rk‖ ≤ 10−10‖r0‖
Domain decomposition with squares (cubes), m

2(3)
p unknowns

per processor

• A is distributed by rows



• Poisson equation
• Diffusion problem with discontinuous and anisotropic coeff

Partition of [0, 1]2 in 4 squares

diffusion coeff (1, 1), (10, 100), (100, 10), (1000, 1000)



First experiment

• Poisson
mp = 250 → 62500 unknowns per processor,

p = 1, 4, 16, 64, 144, 256, 484

• largest problem has � 30 106 unknowns



0 50 100 150 200 250 300 350 400 450 500
5

6

7

8

9

10

11

12

13

14

15

Nb of iterations for Poisson as a function of p

coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp



0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8

10

12

14

16

“elapsed” time (s) for Poisson as a function of p

coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp



Second experiment

• Poisson
mp = 100 → 10000 unknowns per processor

p = 1, 4, 16, 64, 144, 256, 484, 900, 1600

• Largest problem has 16 106 unknowns



0 200 400 600 800 1000 1200 1400 1600
5

6

7

8

9

10

11

12

13

14

15

Nb of iterations for Poisson as a function of p

coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp



0 200 400 600 800 1000 1200 1400 1600
−5

0

5

10

15

20

25

30

35

40

“elapsed” time (s) for Poisson as a function of p

coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp



Third experiment

• Discontinuous and anisotropic problem
mp = 250 → 62500 unknowns per processor

p = 4, 16, 64, 144

• Largest problem has 4 106 unknowns



0 50 100 150
5

6

7

8

9

10

11

12

13

14

15

Nb of iterations for the discontinuous and anisotropic pb as a

function of p

coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp



0 50 100 150
0

2

4

6

8

10

12

14

16

“elapsed” time (s) for the discontinuous and anisotropic pb

as a function of p

coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp



Fourth experiment

• 3D Poisson in [0, 1]3

mp = 30 → m3
p = 27000 unknowns per processor,

p = 1, 8, 27, 64, 125, 216, 343, 512, 729

• Largest problem has � 20 106 unknowns



0 100 200 300 400 500 600 700 800
5

6

7

8

9

10

11

12

13

Nb of iterations for 3D Poisson as a function of p

coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp



0 100 200 300 400 500 600 700 800
0

5

10

15

20

25

30

35

40

“elapsed” time (s) for 3D Poisson as a function of p

coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp



The CEA TERA 10 parallel computer







0 50 100 150 200 250

10
1

10
2

10
3

Poisson 2D, TERA10

Nb of iterations for 2D Poisson as a function of p

TERA10, red: AMG, blue: IC, 10 000 unkn/p



0 50 100 150 200 250
10

−1

10
0

10
1

10
2

Poisson 2D, TERA10

Elapsed time (s) for 2D Poisson as a function of p

TERA10, red: AMG, blue: IC, 10 000 unkn/p



Extension to block matrices

Goal: solve linear systems arising from PDE systems (several

unknowns per element or node)

Example: 3 temperature radiative transfer model

ρ
∂Ei(Ti)
∂t

= div(Ki∇Ti) + α(Te − Ti),

ρ
∂Ee(Te)
∂t

= div(Ke∇Te) − α(Te − Ti) − c(aσET
4
e − σAT

4
r ),

ρ
∂aT 4

r

∂t
= div(Kr∇aT 4

r ) + c(aσET
4
e − σAT

4
r ).

Unknowns are Te, Ti, Tr (ρ is known)

This is a system of nonlinear PDEs whose behavior depends

on the relative values of diffusion and relaxation terms



Using finite volumes, one obtains a nonlinear system with

3×N unknowns which is linearized with the Newton’s method

We can solve these systems with a (point) multilevel

preconditioner

However, results are not always so good

This motivated the development of a block extension of the

AMG preconditioner

In our example, blocks are 3 × 3



Smoothers

◦ iterations of (symmetric) block Gauss–Seidel/Jacobi
Small p× p systems are solved by Gaussian elimination

◦ block IC/ILU



Influence matrix

Define influences between blocks:

block I depends on block J (J influences I) if

‖AI,J‖F ≥ τ max
K �=I

‖AI,K‖F

This gives S of order n/size of blocks



Coarsening

The (block) graph of A is coarsened using S with the same

algorithms as in the point case



Interpolation P

Interpolation is done component by component:

eI =
∑

J∈CI

WI,JeJ ,

CI : coarse nodes influencing I, WI,J diagonal p× p matrix, no
coupling between different types of unknowns

Use the same formula as in the point case

R = PT

Agrossier = RAP

This couples the unknowns



Model problem

Block 5-diagonal symmetric matrix with 3 × 3 blocks

Constant diffusion and relaxation coefficients

Diagonal blocks:




4α+ µh2 −µh2 0
−µh2 4α+ (µ+ σ)h2 −σh2

0 −σh2 4α+ σh2




Nonzero nondiagonal blocks are −αI3, h = 1/(m+ 1)



α = 1, µ = 10, σ = 200

m n nb it block GS nb it block IC

10 300 6 5

20 1200 7 6

30 2700 7 6

40 4800 7 6

50 7500 7 6



Conclusions

• These multilvel preconditioners are (almost) scalable
• Drawback: setup phase is “expensive”
• They are useful only for difficult and/or very large problems


