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We would like to solve large sparse linear systems on parallel
computer in a scalable way

Ax =0b

with A a nonsingular sparse matrix of order n, n may be
several tens or hundreds millions

We use Krylov iterative methods with algebraic multigrid
preconditioners

Today, we will concentrate on symmetric systems using CG



Algebraic multilevel preconditioners



Axr =0b

A symmetric positive definite = PCG
For PCG to be scalable the preconditioner must be s.t.:

e the number of iterations is (almost) constant when the size
of the problem increases

e the complexity of applying the preconditioner is proportional

ton



Algebraic multigrid was introduced by J. Ruge and K. Stuben
(1985)

It mimics geometric multigrid

A “grid” = (sub)space of unknowns (vertices) of the matrix
graph

e T he main difficulty is to have a method both efficient and
parallel



Multilevel preconditioners (V-cycle)

Starting from the null vector :

O— on the coarsest level, solve exactly using Gauss, otherwise
1— Do v smoothing iterations

2— Restrict the residual r to r. = Rr (next coarse level)

3— Recursively solve A.e. =r., A. = RAP, R= P7T

4— Interpolate e. to e = Pe. (next fine level)

5— Add the correction e to the current iterate

6— Do v smoothing iterations



Smoothers

o symmetric Gauss—Seidel (not //)

o incomplete Cholesky (not // ) LDLT
— IC(0)
— IC with fill=in (values)
— IC with fill=in (levels)

LD LT (2F 1 — 2%) = b — Az



o Approximate inverse AINV from M. Benzi (Emory Univ.)
and al.

M~A", M=zD'Z"
where Z is upper triangular with 1 on the diagonal and D is
diagonal

The parameter 7 defines which elements are kept in Z as the
factorization (by columns) proceeds

It works for H—matrices, for SPD matrices one uses SAINV
(Stabilized AINV)

Smoother: Richardson iteration defined as

h Tl = ok o M (b — Az")



Influence matrix

How to define the coarse levels?
N={l,....n}, N=FuUC

Set of indices: standard AMG choice (Ruge-Stuben) for
M—matrices

1 1S a row index

Si= Ul —ai;j > 0max(=air), 0<1}

From S; we construct S (matrix with 1 and 0 elements)



General case

SA={j#1i]| |ail >ngxlai,k\a T <1}

We keep at least one 1 for the largest modulus element ('b")

7 parameter to be chosen

It is usually better to symmetrically normalize the matrix



Coarsening algorithm

The “standard” algorithm is:

Weights w; = nb of points which depend on 7 (using S)
1- Choose a point 7z of maximal weight as a ' point

2- Flag the points that 7 influences (with S) as points

3- Add 1 to the weights of points influencing these new
points (to give them a better chance to be chosen as C
points in the next steps)

4- Decrease by 1 the weights of points that depend on 1

Repeat steps 1-4 until all the points are labelled



Example: Poisson equation in a square, 5-point finite
differences, n = 400

The graph of A is the same as the mesh

The matrix is normalized with ones on the diagonal

graphs and C' and points for all levels
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Interpolation algorithm

ocirel,jel’

Wi,j = =

Qii + ) _pepW @ik
D? and D!V are strong and weak couplings

This comes from writing Ae = 0 and using e; ~ e; for weak

connections and a weighted average for connections with
points

Coarse matrices

The interpolation algorithm defines P and R = P'

Ac = RAP



How to parallelize the smoothers?

Domain decomposition

o Partition the graph of A (or sometimes S) with or without
overlapping (ghost nodes)

o symmetric Gauss—Seidel
parallelized by using Jacobi for interface nodes (SGSJ)
o incomplete Cholesky or AINV

parallelized by ignoring dependencies between subdomains
(ICp, SAINVp)

Only the finest level is partitioned, this may cause load
palancing problems on coarse levels



Parallel coarsening

o LLNL algorithms (Cleary, Falgout, Henson and Jones)

e [ hey start on several “independent” nodes at the same
time

o Other method :
e Start by coarsening the overlapping or the interface

e Flag the (subdomain) neighbors of these C points as
points (without introducing /' — /' connections)

e Coarsen the subdomains using the preceding step as
“boundary conditions”



overlapping + neighbours
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Numerical results

5 point finite differences, unit square, m X m mesh
b random, z' =0

stopping criterion: [|r¥|| < 107197

Small sequential problems



PCG, Poisson, 7 =0.06, (‘ic’, ‘a’, ‘st’, 'st’), vy =1

m v=1 v =2
40 5 5
op=1598145, /n=998.8 | op=2631408, /n=1644
str=35667, /n=22.3
k= 1.03 k= 1.01
50 5 5
op=2528438, /n=1011 op=4165773, /n=1666
str=56497, /n=22.6
k= 1.02 k= 1.01
60 §) 5

op=4265230, /n=1185
str=81388, /n=22.6
k= 1.03

op=6008813, /n=1669

k= 1.01




o Parallel version with no fill-in between subdomains,
incomplete Cholesky

PCG, Poisson, m =40, 7 = 0.05, (‘id’, ‘b’, ‘sd’, ‘st’), without
F' — F' connections on the fine level

nb sd | nb it flops storage
1 5 1 598 253 | 35 550
2 8 2 484 338 | 36 790
4 7 2 186 602 | 36 555
8 8 2 517 864 | 37 529
16 9 2 824 986 | 37 545
32 11 3586 071 | 34 670




o AINV

PCG, Poisson, m =40, 7 = 0.05, (‘ad’, ‘b’", ‘sd’, ‘st’) without
F — F' connections on the fine level

nb sd | nb it flops storage
1 14 | 3929 793 | 36 005
2 15 | 4 277 693 | 36 882
4 14 | 3971 013 | 36 611
38 13 | 3749 853 | 37 236
16 12 3 502 164 | 37 133
32 12 | 3750 659 | 34 536




Numerical results on the CEA TERA 1
(HP-Compaq, Alpha EV6 processors 1Ghz)

5 (7) point finite differences, unit square (cube), m x m mesh,
b random

¥ =0
stopping criterion ||7*]| < 10719||79|

: " : 2(3
Domain decomposition with squares (cubes), mp( ) unknowns
per processor

e A is distributed by rows



e PoOisson equation
e Diffusion problem with discontinuous and anisotropic coeff
Partition of [0,1]% in 4 squares

diffusion coeff (1,1), (10,100), (100, 10), (1000, 1000)



First experiment

e Poisson
m, = 250 — 62500 unknowns per processor,
p=1,4,16,64,144, 256,484

e largest problem has ~ 30 10° unknowns
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Second experiment

e Poisson
m, = 100 — 10000 unknowns per processor
p=1,4,16,64, 144, 256, 484,900, 1600

e Largest problem has 16 10° unknowns
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Third experiment

e Discontinuous and anisotropic problem
m, = 250 — 62500 unknowns per processor
p=4,16,64, 144

e Largest problem has 4 10° unknowns
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Fourth experiment
e 3D Poisson in [0,1]°

3 = 27000 unknowns per processor,

myp = 30 — my

p=1,8,27,64,125,216,343,512, 729

e Largest problem has ~ 20 10° unknowns
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The CEA TERA 10 parallel computer

ST







TERA-

TERA-1D

Processor

Alpha EVE -1 Ghz

Intel Montecito - 1.6 Ghz

Mode

4 processors

16 cores (8 Montecito )

Memory pernode

4 5B -16 GB-32 GB

48 GB - 128 GB

Peak performance

8 Gflops

=100 Gflops

Interconnexion

2 "rails”™ ELAN -3

3 "rails” ELAN - 4

MNetwork Latency o us - Links 400 MB/s | Latency 4 us - Links 900 MB/s
Mumber of nodes 608 544

Peak performance 5 Tflops =G0 Tflops
Sustained performance 1.35 Tflops 12.5 Tflops
Memaory size 3TB 30 TB

Disk space 50 TE 1PB

Disk bandwidth 7.5 GBfs 100 GB/s

Storage network

32 HiPPI links (800 Mbits/s )

20 1B 4x links {1 GB/s)

seraccess

20 1 Gbits links

10 10 Ghits links
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Extension to block matrices

Goal: solve linear systems arising from PDE systems (several
unknowns per element or node)

Example: 3 temperature radiative transfer model

E; (L5 _
paa—(t) = div(K;VT;) + (T, — T5),
Ee Te .
pa 8<t ) _ div(K.VT.) — (T, — T;) — c(acgTs — aaTy),
daT?
p C(;tr = div(K,VaT?) + clacgTs — o aT?).

Unknowns are 1,.,7;,T, (p is known)

This is a system of nonlinear PDEs whose behavior depends
on the relative values of diffusion and relaxation terms



Using finite volumes, one obtains a nonlinear system with
3 x N unknowns which is linearized with the Newton’s method

We can solve these systems with a (point) multilevel
preconditioner

However, results are not always so good

This motivated the development of a block extension of the
AMG preconditioner

In our example, blocks are 3 x 3



Smoothers

o iterations of (symmetric) block Gauss—Seidel/Jacobi

Small p x p systems are solved by Gaussian elimination

o block IC/ILU



Influence matrix

Define influences between blocks:

block I depends on block J (J influences I) if

|Ar,7l|Fr > Tmax ||Ar k|| F
K£I

This gives S of order n/size of blocks



Coarsening

The (block) graph of A is coarsened using S with the same
algorithms as in the point case



Interpolation P

Interpolation is done component by component:

Cr: coarse nodes influencing I, Wy ; diagonal p x p matrix, no
coupling between different types of unknowns

Use the same formula as in the point case

R=p7T

Ag rossier — RAP

T his couples the unknowns



Model problem

Block 5-diagonal symmetric matrix with 3 x 3 blocks
Constant diffusion and relaxation coefficients

Diagonal blocks:

4o+ ph? —uh? 0
—1h? da+ (p+ o)h? —oh?
0 —oh? 4o + oh?

Nonzero nondiagonal blocks are —als, h=1/(m + 1)



a=1,u=10,0 = 200

m n nb it block GS | nb it block IC
10 | 300 6 5
20 | 1200 4 §
30 | 2700 7 6
40 | 4800 7 6
50 | 7500 7 6




Conclusions

e These multilvel preconditioners are (almost) scalable
e Drawback: setup phase is “expensive”

e They are useful only for difficult and/or very large problems



