Algebraic multilevel preconditioners on massively parallel computers

Gérard MEURANT
CEA/DIF

September 2, 2006

We would like to solve large sparse linear systems on parallel computer in a scalable way

$$
A x=b
$$

with A a nonsingular sparse matrix of order n, n may be several tens or hundreds millions

We use Krylov iterative methods with algebraic multigrid preconditioners

Today, we will concentrate on symmetric systems using CG

Algebraic multilevel preconditioners

$$
A x=b
$$

A symmetric positive definite $\Rightarrow \mathrm{PCG}$
For PCG to be scalable the preconditioner must be s.t.:

- the number of iterations is (almost) constant when the size of the problem increases
- the complexity of applying the preconditioner is proportional to n

Algebraic multigrid was introduced by J. Ruge and K. Stuben (1985)

It mimics geometric multigrid
A "grid" \equiv (sub)space of unknowns (vertices) of the matrix graph

- The main difficulty is to have a method both efficient and parallel

Multilevel preconditioners (V-cycle)

Starting from the null vector :
0 - on the coarsest level, solve exactly using Gauss, otherwise
1- Do ν smoothing iterations
2- Restrict the residual r to $r_{c}=R r$ (next coarse level)
3- Recursively solve $A_{c} e_{c}=r_{c}, A_{c}=R A P, R=P^{T}$
4- Interpolate e_{c} to $e=P e_{c}$ (next fine level)
5- Add the correction e to the current iterate
6- Do ν smoothing iterations

Smoothers

- symmetric Gauss-Seidel (not //)
- incomplete Cholesky (not //) LDL ${ }^{T}$
- IC(0)
- IC with fill-in (values)
- IC with fill-in (levels)

$$
L D^{-1} L^{T}\left(x^{k+1}-x^{k}\right)=b-A x^{k}
$$

- Approximate inverse AINV from M. Benzi (Emory Univ.) and al.

$$
M \approx A^{-1}, \quad M=Z D^{-1} Z^{T}
$$

where Z is upper triangular with 1 on the diagonal and D is diagonal

The parameter τ defines which elements are kept in Z as the factorization (by columns) proceeds
It works for H -matrices, for SPD matrices one uses SAINV (Stabilized AINV)

Smoother: Richardson iteration defined as

$$
x^{k+1}=x^{k}+M\left(b-A x^{k}\right)
$$

Influence matrix

How to define the coarse levels?

$$
\mathcal{N}=\{1, \ldots, n\}, \quad \mathcal{N}=F \cup C
$$

Set of indices: standard AMG choice (Ruge-Stuben) for M-matrices
i is a row index

$$
S_{i}=\left\{j \mid-a_{i, j}>\theta \max _{k \neq i}\left(-a_{i, k}\right), \quad \theta<1\right\}
$$

From S_{i} we construct S (matrix with 1 and 0 elements)

General case

$$
S_{i}^{A}=\left\{j \neq i| | a_{i, j}\left|>\tau \max _{k}\right| a_{i, k} \mid, \quad \tau<1\right\}
$$

We keep at least one 1 for the largest modulus element ('b')
τ parameter to be chosen
It is usually better to symmetrically normalize the matrix

Coarsening algorithm

The "standard" algorithm is:
Weights $w_{i}=\mathrm{nb}$ of points which depend on i (using S)
1- Choose a point i of maximal weight as a C point
2- Flag the points that i influences (with S) as F points
3- Add 1 to the weights of points influencing these new points (to give them a better chance to be chosen as C points in the next steps)

4- Decrease by 1 the weights of points that depend on i
Repeat steps 1-4 until all the points are labelled

Example: Poisson equation in a square, 5-point finite differences, $n=400$

The graph of A is the same as the mesh
The matrix is normalized with ones on the diagonal
graphs and C and F points for all levels
$I=1$, nb of coarse points $=200$

Interpolation algorithm

- $i \in F, j \in C$

$$
\omega_{i, j}=-\frac{a_{i, j}+\sum_{k \in D_{i}^{S}} \frac{a_{i, k} a_{k, j}}{\sum_{m \in C_{i}} a_{k, m}}}{a_{i, i}+\sum_{k \in D_{i}^{W}} a_{i, k}}
$$

D_{i}^{S} and D_{i}^{W} are strong and weak couplings
This comes from writing $A e=0$ and using $e_{j} \approx e_{i}$ for weak connections and a weighted average for connections with F points

Coarse matrices

The interpolation algorithm defines P and $R=P^{T}$

$$
A_{C}=R A P
$$

How to parallelize the smoothers?

Domain decomposition

- Partition the graph of A (or sometimes S) with or without overlapping (ghost nodes)
- symmetric Gauss-Seidel
parallelized by using Jacobi for interface nodes (SGSJ)
- incomplete Cholesky or AINV
parallelized by ignoring dependencies between subdomains (ICp, SAINVp)

Only the finest level is partitioned, this may cause load
balancing problems on coarse levels

Parallel coarsening

- LLNL algorithms (Cleary, Falgout, Henson and Jones)
- They start on several "independent" nodes at the same time
- Other method :
- Start by coarsening the overlapping or the interface
- Flag the (subdomain) neighbors of these C points as F points (without introducing $F-F$ connections)
- Coarsen the subdomains using the preceding step as "boundary conditions"

Interface (magenta) + neighbors (white), 4 subdomains

First subdomain

Global result, 4 subdomains

Numerical results

5 point finite differences, unit square, $m \times m$ mesh
b random, $x^{0}=0$
stopping criterion: $\left\|r^{k}\right\| \leq 10^{-10}\left\|r^{0}\right\|$
Small sequential problems

m	$\nu=1$	$\nu=2$
40	$\begin{gathered} 5 \\ \mathrm{op}=1598145, / \mathrm{n}=998.8 \\ \mathrm{str}=35667, / \mathrm{n}=22.3 \\ \kappa=1.03 \end{gathered}$	$\begin{gathered} 5 \\ o p=2631408, / n=1644 \end{gathered}$ $\kappa=1.01$
50	$\begin{gathered} 5 \\ \mathrm{op}=2528438, / \mathrm{n}=1011 \\ \mathrm{str}=56497, / \mathrm{n}=22.6 \\ \kappa=1.02 \end{gathered}$	$\begin{gathered} 5 \\ o p=4165773, / n=1666 \end{gathered}$ $\kappa=1.01$
60	$\begin{gathered} 6 \\ \mathrm{op}=4265230, / \mathrm{n}=1185 \\ \mathrm{str}=81388, / \mathrm{n}=22.6 \\ \kappa=1.03 \end{gathered}$	$\begin{gathered} 5 \\ o p=6008813, / n=1669 \end{gathered}$ $\kappa=1.01$

- Parallel version with no fill-in between subdomains, incomplete Cholesky

PCG, Poisson, $m=40, \tau=0.05$, ('id', 'b', 'sd', 'st'), without $F-F$ connections on the fine level

nb sd	nb it	flops	storage
1	5	1598253	35550
2	8	2484338	36790
4	7	2186602	36555
8	8	2517864	37529
16	9	2824986	37545
32	11	3586071	34670

- AINV

PCG, Poisson, $m=40, \tau=0.05$, ('ad', 'b', 'sd', 'st') without $F-F$ connections on the fine level

nb sd	nb it	flops	storage
1	14	3929793	36005
2	15	4277693	36882
4	14	3971013	36611
8	13	3749853	37236
16	12	3502164	37133
32	12	3750659	34536

Numerical results on the CEA TERA 1 (HP-Compaq, Alpha EV6 processors 1Ghz)

5 (7) point finite differences, unit square (cube), $m \times m$ mesh, b random
$x^{0}=0$
stopping criterion $\left\|r^{k}\right\| \leq 10^{-10}\left\|r^{0}\right\|$
Domain decomposition with squares (cubes), $m_{p}^{2(3)}$ unknowns per processor

- A is distributed by rows
- Poisson equation
- Diffusion problem with discontinuous and anisotropic coeff Partition of $[0,1]^{2}$ in 4 squares diffusion coeff $(1,1),(10,100),(100,10),(1000,1000)$

First experiment

- Poisson
$m_{p}=250 \rightarrow 62500$ unknowns per processor,
$p=1,4,16,64,144,256,484$
- largest problem has $\simeq 3010^{6}$ unknowns

Nb of iterations for Poisson as a function of p
coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

"elapsed" time (s) for Poisson as a function of p
coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

Second experiment

- Poisson
$m_{p}=100 \rightarrow 10000$ unknowns per processor
$p=1,4,16,64,144,256,484,900,1600$
- Largest problem has 1610^{6} unknowns

Nb of iterations for Poisson as a function of p
coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

"elapsed" time (s) for Poisson as a function of p coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

Third experiment

- Discontinuous and anisotropic problem $m_{p}=250 \rightarrow 62500$ unknowns per processor
$p=4,16,64,144$
- Largest problem has 410^{6} unknowns

Nb of iterations for the discontinuous and anisotropic pb as a function of p
coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp

"elapsed" time (s) for the discontinuous and anisotropic pb as a function of p
coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp

Fourth experiment

- 3D Poisson in $[0,1]^{3}$
$m_{p}=30 \rightarrow m_{p}^{3}=27000$ unknowns per processor,
$p=1,8,27,64,125,216,343,512,729$
- Largest problem has $\simeq 2010^{6}$ unknowns

Nb of iterations for 3D Poisson as a function of p coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

"elapsed" time (s) for 3D Poisson as a function of p
coarsening : LLNL, blue: SGSJ, red dashed: IC, red: ICp, green: SAINVp

The CEA TERA 10 parallel computer

	TERA-1	TERA-10
Processor	Alpha EV6-1 Ghz	Intel Montecito-1.6 Ghz
Node	4 processors	16 cores (8 Montecito)
Memory pernode	4 GB - $16 \mathrm{~GB}-32 \mathrm{~GB}$	$48 \mathrm{~GB}-128 \mathrm{~GB}$
Peak performance	8 Gflops	>100 Gflops
Interconnexion Network	2 "rails" ELAN - 3 Latency 5 us - Links $400 \mathrm{MB} / \mathrm{s}$	```3 "rails" ELAN - 4 Latency 4 us - Links }900\textrm{MB}/\textrm{s```
Number of nodes	608	544
Peak performance	5 Tflops	> 60 Tflops
Sustained performance	1.35 Tflops	12.5 Tflops
Memory size	3 TB	30 TB
Disk space	50 TB	1 PB
Disk bandwidth	7.5 GB/s	$100 \mathrm{~GB} / \mathrm{s}$
Storage network	32 HiPPI links ($800 \mathrm{Mbits} / \mathrm{s}$)	20 IB $4 \times$ links ($1 \mathrm{~GB} / \mathrm{s}$)
User access	201 Gbits links	1010 Gbits links

Nb of iterations for 2D Poisson as a function of p
TERA10, red: AMG, blue: IC, 10000 unkn/p

Elapsed time (s) for 2D Poisson as a function of p
TERA10, red: AMG, blue: IC, 10000 unkn/p

Extension to block matrices

Goal: solve linear systems arising from PDE systems (several unknowns per element or node)

Example: 3 temperature radiative transfer model

$$
\begin{gathered}
\rho \frac{\partial E_{i}\left(T_{i}\right)}{\partial t}=\operatorname{div}\left(K_{i} \nabla T_{i}\right)+\alpha\left(T_{e}-T_{i}\right) \\
\rho \frac{\partial E_{e}\left(T_{e}\right)}{\partial t}=\operatorname{div}\left(K_{e} \nabla T_{e}\right)-\alpha\left(T_{e}-T_{i}\right)-c\left(a \sigma_{E} T_{e}^{4}-\sigma_{A} T_{r}^{4}\right) \\
\rho \frac{\partial a T_{r}^{4}}{\partial t}=\operatorname{div}\left(K_{r} \nabla a T_{r}^{4}\right)+c\left(a \sigma_{E} T_{e}^{4}-\sigma_{A} T_{r}^{4}\right)
\end{gathered}
$$

Unknowns are T_{e}, T_{i}, T_{r} (ρ is known)
This is a system of nonlinear PDEs whose behavior depends on the relative values of diffusion and relaxation terms

Using finite volumes, one obtains a nonlinear system with $3 \times N$ unknowns which is linearized with the Newton's method We can solve these systems with a (point) multilevel preconditioner

However, results are not always so good
This motivated the development of a block extension of the AMG preconditioner

In our example, blocks are 3×3

Smoothers

- iterations of (symmetric) block Gauss-Seidel/Jacobi

Small $p \times p$ systems are solved by Gaussian elimination

- block IC/ILU

Influence matrix

Define influences between blocks:
block I depends on block J (J influences I) if

$$
\left\|A_{I, J}\right\|_{F} \geq \tau \max _{K \neq I}\left\|A_{I, K}\right\|_{F}
$$

This gives S of order $n /$ size of blocks

Coarsening

The (block) graph of A is coarsened using S with the same algorithms as in the point case

Interpolation P

Interpolation is done component by component:

$$
e_{I}=\sum_{J \in C_{I}} W_{I, J} e_{J}
$$

C_{I} : coarse nodes influencing $I, W_{I, J}$ diagonal $p \times p$ matrix, no coupling between different types of unknowns

Use the same formula as in the point case

$$
\begin{gathered}
R=P^{T} \\
A_{\text {grossier }}=R A P
\end{gathered}
$$

This couples the unknowns

Model problem

Block 5-diagonal symmetric matrix with 3×3 blocks
Constant diffusion and relaxation coefficients
Diagonal blocks:

$$
\left(\begin{array}{ccc}
4 \alpha+\mu h^{2} & -\mu h^{2} & 0 \\
-\mu h^{2} & 4 \alpha+(\mu+\sigma) h^{2} & -\sigma h^{2} \\
0 & -\sigma h^{2} & 4 \alpha+\sigma h^{2}
\end{array}\right)
$$

Nonzero nondiagonal blocks are $-\alpha I_{3}, h=1 /(m+1)$

$$
\alpha=1, \mu=10, \sigma=200
$$

m	n	nb it block GS	nb it block IC
10	300	6	5
20	1200	7	6
30	2700	7	6
40	4800	7	6
50	7500	7	6

Conclusions

- These multilvel preconditioners are (almost) scalable
- Drawback: setup phase is "expensive"
- They are useful only for difficult and/or very large problems

