Resolution of Large Scale Eigenproblem using YML Workflow Framework

Nahid Emad
Versailles university

France

Tetsuya Sakurai
Tsukuba university
Japan

Goals

Compute the Ritz-pairs $\left(\lambda_{1}, \ldots, \lambda_{m}\right),\left(q_{1}, \ldots, q_{m}\right)$ of

$$
(A-\lambda B) q=0 \text { or }(A-\lambda I) q=0
$$

by Sakurai-Sugiura and Padé-Rayleigh-Ritz (PRR) projection moment-based methods with omniRPC middleware and YML workflow framework

Study of the problems:

- Algorithmic and implementation
- Performance evaluation

Outline

- Goals
- Sakurai-Sugiura method
- PRR method
- Distribution
\checkmark Algorithmic
\checkmark Implementation
- YML framework/omniRPC middleware
- Experiments
- Conclusion

Sakurai-Sugiura method

The generalized eigenvalue problem:

$$
A x=\lambda B x
$$

Suppose that m eigenvalues are located inside Γ domain

Moment-based method

$\boldsymbol{u}, \boldsymbol{v}$: nonzero vectors
Moments : $\mu_{k}=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma}(z-\gamma)^{k} \boldsymbol{u}^{H}(z B-A)^{-1} v d z$
Hankel Matrices :

$$
H_{m}=\left(\begin{array}{cccc}
\mu_{0} & \mu_{1} & \cdots & \mu_{m-1} \\
\mu_{1} & \mu_{2} & \cdots & \mu_{m} \\
\vdots & \vdots & & \vdots \\
\mu_{m-1} & \mu_{m} & \cdots & \mu_{2 m-2}
\end{array}\right) \quad H_{m}^{<}=\left(\begin{array}{cccc}
\mu_{1} & \mu_{2} & \cdots & \mu_{m} \\
\mu_{2} & \mu_{3} & \cdots & \mu_{m+1} \\
\vdots & \vdots & & \vdots \\
\mu_{m} & \mu_{m} & \cdots & \mu_{2 m-1}
\end{array}\right)
$$

The eigenvalues of $H_{m}^{<}-\lambda H_{m}$ are given by $\quad \lambda_{1}, \ldots, \lambda_{m}$ which are the poles of the Padé approximants of $\sum_{\mathrm{k}=0, \infty}\left(\mu_{\mathrm{k}} / \mathrm{z}^{\mathrm{k}+1}\right)$

Circular domaine

$\Gamma:$ Circle with center γ and radius ρ

Equidistributed points on the circle:

$$
\omega_{j}=\gamma+\rho e^{\frac{2 \pi i}{N}(j+1 / 2)}, \quad j=0,1, \ldots, N-1
$$

μ_{k} are approximated by the N-point trapezoidal rule:

$$
\begin{aligned}
& \mu_{k} \approx \frac{1}{N} \sum_{j=0}^{N-1}\left(\omega_{j}-\gamma\right)^{k+1} f_{j}, \quad k=0, \ldots, 2 m-1 \\
& f_{j}=\boldsymbol{u}^{H}\left(\omega_{j} B-A\right)^{-1} \boldsymbol{v}, \quad j=0, \ldots, N-1
\end{aligned}
$$

Sakurai-Sugiura algorithm

input: $\mathrm{u}, \mathrm{v}, \mathrm{N}, \mathrm{m}, \gamma, \rho$ output: $\left(\lambda_{1}, \ldots, \lambda_{\mathrm{m}}\right),\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{m}}\right)$

1. Set $\omega_{\mathrm{j}}=\gamma+\rho \cdot \exp (2 \pi \mathrm{i}(\mathrm{j}+1 / 2) / \mathrm{N})$, for $\mathrm{j}=0, \ldots \mathrm{~N}-1$.
2. $\mathbf{v}=\left(\omega_{j} \mathbf{B}-\mathbf{A}\right) \mathbf{y}_{\mathbf{j}}$, for $\mathbf{j}=\mathbf{0}, \ldots \mathbf{N}-\mathbf{1}$.
3. $\mathrm{f}_{\mathrm{j}}=\mathrm{u}^{\mathrm{H}} \mathrm{y}_{\mathrm{j}}$, for $\mathrm{j}=0, \ldots \mathrm{~N}-1$.
4. Compute μ_{k}, for $\mathrm{k}=0, \ldots 2 \mathrm{~m}-1$.
5. Compute the eigenvalues $\xi_{1}, \ldots, \xi_{\mathrm{m}}$ of $\left(\mathrm{H}_{\mathrm{m}}-\xi \hat{H}_{\mathrm{m}}\right) \mathrm{z}=0$.
6. Compute $\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{m}}$ by $\mathrm{q}_{\mathrm{j}}=\mathrm{W}_{\mathrm{m}} \mathrm{s}_{\mathrm{k}}$ where $\mathrm{s}_{\mathrm{k}}=\mu_{\mathrm{k}} \mathrm{u}$.
7. $\operatorname{Set} \lambda_{\mathrm{j}}=\gamma+\xi_{\mathrm{j}}$, for $\mathrm{j}=0, \ldots, \mathrm{~m}-1$.

Padé-Rayleigh-Ritz method

X : non-zero vector
A: n-order Hermitian matrix
PRR approximates the poles of $\mathrm{R}_{\mathrm{x}}(\lambda)=\left((\mathrm{I}-\lambda \mathrm{A})^{-1} \mathrm{x}, \mathrm{x}\right)$
by those of $[m-1 / m]_{R x}(\lambda)=P_{m-1}(\lambda) / Q_{m}(\lambda)$
the Padé approximant of order m of the function $R_{x}(\lambda)$
The roots of $\mathrm{Q}_{\mathrm{m}}(\lambda)$ are given by $\lambda_{1}, \ldots, \lambda_{m}$

Moments : $\mu_{i+j}=\left(A^{i+j} \mathrm{x}, \mathrm{x}\right)$ for $\mathrm{i}, \mathrm{j}=0,1, \ldots$

Moment-based method

Let $H(i, j)=\left(\begin{array}{cccc}\mu_{i+0} & \mu_{i+1} & \ldots & \mu_{i+j} \\ \mu_{i+1} & \mu_{i+2} & \ldots & \mu_{i+j+1} \\ \vdots & \vdots & & \vdots \\ \mu_{i+j} & \mu_{i+j+1} & \ldots & \mu_{i+2 j}\end{array}\right)$ for $i, j=0,1, \ldots$

- Solve $H_{m} b=c$
where $H_{m}=H(0, m-1), \quad c=-\left(\mu_{m}, \mu_{m+1}, \ldots, \mu_{2 m-1}\right)^{t}$ and
$b=-\left(b_{0}, b_{1}, \ldots, b_{m-1}\right)^{t}$
- Compute the roots of $Q_{m}(\lambda)=\lambda^{m}+b_{m-1} \lambda^{m-1}+\ldots+b_{1} \lambda+b_{0} \mid$ whose the companion matrix is: 1

$$
Q_{m}^{c}=\left(\begin{array}{ccccc}
-b_{m-1} & -b_{m-2} & \ldots & -b_{1} & -b_{0} \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

PRR algorithm

input: $\mathrm{x}_{0}, \mathrm{k}, \mathrm{m}$ output: $\left(\lambda_{1}, \ldots, \lambda_{\mathrm{m}}\right),\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{m}}\right)$

1. Compute $\mu_{2 \mathrm{k}-1}=\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}-1}\right), \mu_{2 \mathrm{k}}=\left(\mathrm{x}_{\mathrm{k}}, \mathrm{x}_{\mathrm{k}}\right)$ where $\mathrm{x}_{\mathrm{k}}=\mathrm{Ax}_{\mathrm{k}-1}$, for $\mathrm{k}=1, \ldots, \mathrm{~m}-1$.
2. Solve the linear system: $\mathrm{H}_{\mathrm{m}} \mathrm{b}=\mathrm{c}$.
3. Compute the eigenvalues λ_{i} of the matrix H_{m}
4. Compute the vectors z_{i} of $\left(\mathrm{H}_{\mathrm{m}}-\lambda \mathrm{H}_{\mathrm{m}}{ }^{\circ}\right) \mathrm{z}_{\mathrm{i}}=0$
5. Compute the approximated eigenvectors
$\left[\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{m}}\right]=\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right]\left[\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{m}}\right]$.
6. If no convergence then with a new x_{0}, go to 1 .

Some properties of both approaches

Sakurai-Sugiura:

- solve generalized eigenproblem
- is not iterative
- acquires $\mathrm{N} n$-order linear systems solving
- numerically reliable

Padé-Raleigh-Ritz:

- Solve Hermitian eigenproblem
- iterative
- acquires an m-order linear system solving
- numerically reliable for small subspaces

Multiple PRR

$$
m_{i} \in\left[m_{\min }, \ldots, m=m_{\max }\right]
$$

- Different subspaces

$$
\begin{aligned}
& -K_{m i}=\operatorname{span}\left\{w_{i}, A w_{i}, \ldots, A^{m i-1} w_{i}\right\} \text { with } \\
& \quad m_{i} \neq m_{j} \text { and } W_{i} \neq W_{j} \text { for } i, j \in[1, \ldots, l] \text { and } i \neq j
\end{aligned}
$$

- « Nested» subspaces

$$
\begin{aligned}
& -K_{m l}=\operatorname{span}\left\{w_{1}, A w_{1}, \ldots, A^{m 1-1} w_{1}, A^{m 1} W_{2}, \ldots, A^{m 2-1} W_{2},\right. \\
& \left.A^{m 2} W_{3}, \ldots, A^{m 3-1} W_{3}, \ldots, A^{m l-1} W_{l}\right\} \\
& K_{m 1} \subset K_{m 2} \subset \ldots \subset K_{m l}
\end{aligned}
$$

Computation with distributed resources

For a GRID environment:

- Master-worker type algorithm

- P2P type algorithm

Sakurai-Sugiura method distribution

$\mu_{k} \approx \frac{1}{N} \sum_{j=0}^{N-1}\left(\omega_{j}-\gamma\right)^{k+1} f_{j}$

$$
f_{j}=\boldsymbol{u}^{H}\left(\omega_{j} B-A\right)^{-1} \boldsymbol{v}
$$

Sakurai-Sugiura method distribution

Multiple PRR distribution

| $\boldsymbol{I} \quad:$ Iinitialisation |
| :--- | :--- |
| $\boldsymbol{P R}: ~ P R R ~ r e d u c t i o n ~$ |
| $\boldsymbol{S} \quad:$ Subspace computation |
| $\boldsymbol{R e}:$ Reduction of the results |
| \quad of 2 PRR processes |
| $\boldsymbol{R} \quad:$ Restarting strategy |

PPR on NetSolve

omniRPC and YML

YML framework provides a tools to support the execution and the programming of the complex applications

- Middleware independence (XtremWeb, omniRPC, ...)
- Graph description language (yvetteML)
-Easy integration of some existing LA libraries

omniRPC middleware

-Grid Remote Procedure Call System
-Master-worker style parallel programming
-Globus, ssh : Certification
-Persistency : Enable to store data on remote hosts
-Asynchronous call

- Automatic process management

Multiple PRR - YvetteML code

```
par (id := 1; nbProcess)
do # id is the PRR process identifier
    compute PRR_Start(I[id], n, id);
    seq (i := 1 ; maxIter)
    do
    compute PRR_Reduction(H[id], B[id],n, m[id], I/id], id);
    compute PRRSolver(Val[intNodes+id],Vec[intNodes + id],
                            Res[intNodes + id],H[id], B[id], n, m[id], r, tol, id);
        # Reduction
        # restart
    enddo
enddo
```


omniRPC pseudo code

```
call OmniRPC_Init
call OmniRPC_Module_Init(. . .)
...
doj=0,N-1
    call OmniRPC_Call_Async(. ..)
    ...
    ...
enddo
call OmniRPC_Wait_All
```


Numerical Examples

A problem derived from computation of the molecular orbital of Lysozyme

> A, B : Real symmetric $\mathrm{n}=20,758$

Drop small matrix elements ($\leq 10^{-7}$): Number of nonzero elements $=10,010,416$

Parameters

$$
\begin{aligned}
& \mathrm{N}=48 \\
& 8 \text { circles were located around the frontier orbital }
\end{aligned}
$$

20 eigenvalues were obtained

Solver for linear systems : COCG method
Preconditioner : incomplete Cholesky factorization

Runtime execution support

Wall-clock time in seconds

Number of nodes	Time (sec)	Speedup
1	2542	1.00
2	1271	2.00
4	665	3.82
6	466	5.45
8	375	6.78
10	318	7.99

Timing Results

Conclusion

- Sakurai-Sugiura and PRR methods need many computations (Coarse grain, Asynchronism, Fault tolerance, ...)
- Rehabilitation of this kind of methods
- Data transfer method (data warehouse solution)
- Performance evaluation criterion (execution time, ...)

