
High Performance Computing
Center North (HPC2N)

Using recursion to improve
performance of dense linear
algebra software

Erik Elmroth
Dept of Computing Science & HPC2N

Umeå University, Sweden

Joint work with Fred Gustavson, Isak Jonsson & Bo Kågström

PMAA 2006, Rennes,
September 7 – 9, 2006

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Matrix Computations
° Fundamental and ubiquitous in computational

science and its vast application areas
° Library software – optimized building blocks

for fundamental operations
° BLAS, (Sca)LAPACK, SLICOT (see also NETLIB)
° ESSL and other vendors
° Portability and efficiency

° Architecture evolution: HPC systems with
multiple SMP nodes, several levels of caches,
more functional units per CPU

° Continuing demand for new and improved
algorithms and software

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Communication Media

“Data transport” in memory
hierarchies

° of today’s computer systems
° PC - cluster - supercomputer

Small, Fast, Expensive

Large, Slow, less Expensive

caches
local memory

remote memory

registers

Key to performance: understand algorithm - architecture interaction
Hierarchical blocking

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

The fundamental AHC triangle

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

16151211
1413109
8743
6521

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Outline
° Hierarchical blocking: motivation and implications
° Recursive blocked templates
° (Recursive blocked data structures)
° Case studies:

° 1. General matrix multiply and add (GEMM)
° 2. QR factorization
° 3. Over- and under-determined linear systems
° 4. Triangular matrix equations and condition estimation
° 5. (Packed Cholesky factorization)

° Concluding remarks

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Block algorithms
° Block algorithms instead of point-wise
° Matrix operations instead of scalar ops

(key to performance: O(n3) ops on O(n2) data)

° (Explicit) blocking through multiple levels of
nested loops/subroutine calls

° Small fraction level-1 and level-2
° Bulk computations as level-3
° Typically, level-3 fraction increases with

matrix size

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Recursive Blocked Algorithms
° Automatic variable blocking
° Replaces level-1 & -2 ops by level-3

° further improves performance
° reduces the amount of code needed (level-2

routines)
° Improve on the temporal locality

Further performance improvements
° Match data structure with the algorithm
° Recursive blocked data structures improve

on the spatial locality

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Some illustrations

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Traditional blocking for a
memory hierarchy

Explicit multi-
level blocking

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Standard (LAPACK-style)
factorization block
algorithms

Factor fixed size
block column

Update remaining
matrix

Repeat for updated matrix

Factorization completed

Update completed

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

L21

L11
U11

LAPACK-style LU factorization
Factor fixed size
block column

Repeat for updated matrix

A21

A11
A12

A12

L11 U12 = A12

A22←A22-L21U12

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Recursion template for one-
sided matrix factorization

1. Partition
2. Factor left hand side
3. Update right hand side
4. Factor right hand side

Factorization completed

Update completed

Fits low level
in memory hierarchy

Fits high level in
memory hierarchy

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Splittings defining independent
and dependent tasks

Critical path of subtasks:
(1), (2), (3)

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

TRSM Operation: AX = C,
A mxm upper triangular, C/X mxn

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Case Study 1
General matrix multiply and add

(GEMM)

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Recursive splittings for GEMM:
)(op)(op)(op BACC αβ +←

m x n m x k k x nSplit

m, n, k

m

n

k

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Recursive splitting - by breadth
or by depth

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Recursive GEMM: multi-level
vs. recursive blocking

IBM PPC604,
112 MHz

ATLAS

RGEMM

Explicit
blocking

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Case Study 2
QR factorization

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Recursion template for one-
sided matrix factorization

1. Partition
2. Factor left hand side
3. Update right hand side
4. Factor right hand side

Factorization completed

Update completed

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

1. Divide A mxn in two parts
(left & right)

2. Factorize left hand side by a
recursive call

3. Update right hand side

4. Factorize by a recursive call

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

22

1211

2221

1211

R0
RR

Q
AA
AA

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎯⎯←⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

22

12T
1

22

12

A
A

Q
A~
R

Recursive blocked
QR factorization

22222 A~RQ =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠

⎞
⎜
⎝

⎛

21

1111
1 Α

Α
0

R
Q

Stopping criteria:
if n ≤ 4 use
standard algorithm

Need to combine Q1 = I – Y1T1Y1
T & Q2 = I – Y2T2Y2

T

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Combining Q1 = I – Y1T1Y1
T & Q2 = I – Y2T2Y2

T

()21
2

22
T
111

T
2222

T
1111

vv Y and
τ0

τvvττ
 T

then,vv τ- I Q and vv τ- I QGiven

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

==
Two elementary transformations

()21
2

22
T

111

T
2222

T
1111

vY Y and
τ0

τvYTT
 T

then,vv τ- I Q and YTY - I QGiven

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

== One block and one
elementary transformation

Column by column
using Level 2 operations

()21
2

22
T
111

T
2222

T
1111

YY Y and
T0

TYYTT
 T

then,YTY - I Q and YTY - I QGiven

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

== Two block transformations

Recursively, block by block
using Level 3 operations

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

RGEQR3 - Recursive algorithm for QR
factorization

[Y, R, T] = RGEQR3 A(1:m, 1:n)

if (n == 1):

Compute Householder transformation Q = I - t u uT, such that QT A = (x, 0) T

return (u, x, t)
else

let n1 = n/2 and j1 = n1 + 1

[Y1, R1, T1] = RGEQR3 A(1:m, 1:n1) ! Recursively factor first part

A(1:m, j1:n) ← (I - Y1 T Y1
T) T A(1:m, j1:n) ! Update second part of A

[Y2, R2, T2] = RGEQR3 A(j1:m, j1:n) ! Recursively factor second part of A

T3 = - T1(Y1
T Y2) T2

Let R3 = A(1:n1, j1:n)

Now,

return [Y, R, T]
end

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

2

31

2

31
21 T0

TT
T and

R0
RR

 R ,YY Y

In practice, Y and
R overwrite A

#flops grows cubically with
Householder transformations
being aggregated (compact WY)!

n1 = min(n/2, nb)

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Recursive blocked QR highlights
° Recursive splitting controlled by nb

(splitting point = min(nb, n/2), nb = 32-64)
° Level 3 algorithm for generating

Q = I – YTYT (compact WY) within the
recursive blocked algorithm (T triangular
of size <= nb)

° Replaces LAPACK level 2 and 3 algorithms

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Recursive QR vs. LAPACK

1.2-1.4x

Up to 1.95x

m = n m >> n

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Parallel speedup - 4 processor PPC604e

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Case Study 3
Over- and under-determined
linear systems

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

LAPACK DGELS

F

T
F

BXABAX −− or Solve

Least squares solution
(over-determined systems)

Minimum norm solution
(under-determined systems)

A = QR A = QR
A = LQ

Rough outline of basic algorithms
• Factor A into QR (or LQ)
• Least squares: Apply QT (or Q) to B, solve triangular system
• Min. norm. soln.: Solve triangular system, apply Q (or QT) to solution

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Least squares recursive
algorithm

GEMM + TRSM

GEMM + TRMM

GEMM + TRMM + TRSM

Factorization, update and triangular solve
are interleaved for each block => data reuse

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Minimum norm solution
° Similar-style algorithm

° Basic steps (preformed recursively):
° QR factorization of block columns of A
° Solve triangular systems
° Apply Q to solution

F

T BXA −

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

RGELS - Remaining Cases
° In LAPACK DGELS, A = LQ is computed for

° least squares solution - transposed case
° minimum norm solution - non-transposed case

° Each Householder transformation is computed on a row
of A, i.e., working on elements stored with stride = LDA

° RGELS performs explicit transposition C = AT and solves
||CX - B|| or ||CTX - B|| using one of the two algorithms
already presented

— Transposition requires additional storage to be
allocated and extra operations

+ Additional performance improvements by roughly a
factor of 2 AND

+ Reduces amount of code by roughly a factor of 2

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

RGELS - LSQ: NRHS = 1 FBAX −

Performance
ratio

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

RGELS - LSQ: transposed, M = 50 F
T BXA −

Performance
ratio

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Case Study 4
Triangular matrix equations and

condition estimation

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Matrix equations

One-sided (top) and two-sided (bottom)

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Recursive blocked SYCT template
Case 1: 1 <= n <= m/2

Case 2: 1 <= m <= n/2

Case 3: n/2 < m < 2n

A (m × m), B (n × n) upper tri.

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Recursive SYCT – Case 3

S S

S

G G

G
G

S

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Triangular generalized coupled
Sylvester equation - GCSY

AX – YB = C
DX – YE = F

(A, D) and (B, E) in
generalized Schur
form

Solution (X, Y) over-
writes r.h.s. (C, F)

LAPACK

Explicit //

rtrgcsy (2.6x)

(1.6x)

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

RECSY library
° Recursive blocked algorithms for

solving reduced matrix equations
° Recursion implemented in F90
° SMP versions using OpenMP
° F77 wrappers for LAPACK and

SLICOT routines
° www.cs.umu.se/research/parallel/recsy/

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Recursive blocking ...
° creates new algorithms for linear algebra

software
° expresses dense linear algebra algorithms

entirely in terms of level-3 BLAS like
matrix-matrix operations

° introduces an automatic variable blocking
that targets multiple levels of a deep
memory hierarchy

° can also be used to define hybrid data
formats for storing block-partitioned
matrices (general, triangular, symmetric,
packed) - L1, L2 and TLB misses are minimized for
certain block sizes (Park-Hong-Prasanna´03)

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

High-performance software

° Make use of data locality and
superscalar optimization techniques
° Recursive blocked algorithms improve on

the temporal data locality
° Hybrid data formats improve on the

spatial data locality
° Portable and generic superscalar kernels

ensure that all functional units on the
processor(s) are used efficiently

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Acknowledgements
° Fred Gustavson, Isak Jonsson, Bo Kågström

(co-authors and co-workers)
° André Henriksson, Olov Gustavsson and

Andreas Lindkvist (earlier MSc students)
° Bjarne Andersén, Jerzy Wasniewski (e.g.,

packed Cholesky)
° Robert Granat (PhD student)
° HPC and LA team at Umeå University
° Community that do related and

complementary work!

