

Outline

- Hierarchical blocking: motivation and implications
- [°] Recursive blocked templates
- ° (Recursive blocked data structures)
- Case studies:
 - 1. General matrix multiply and add (GEMM)
 - 2. QR factorization
 - 3. Over- and under-determined linear systems
 - 4. Triangular matrix equations and condition estimation
 - 5. (Packed Cholesky factorization)
- Concluding remarks

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Name	Matrix equation	Acronym
Standard Sylvester (CT)	AX - XB = C	SYCT
Standard Lyapunov (CT)	$AX + XA^T = C$	LYCT
Generalized coupled Sylvester	(AX - YB, DX - YE) = (C, F)	GCSY
Standard Sylvester (DT)	$AXB^T - X = C$	SYDT
Standard Lyapunov (DT)	$AXA^T - X = C$	LYDT
Generalized Sylvester	$AXB^T - CXD^T = E$	GSYL
Generalized Lyapunov (CT)	$AXE^T + EXA^T = C$	GLYCT
Generalized Lyapunov (DT)	$AXA^T - EXE^T = C$	GLYDT

