Using recursion to improve performance of dense linear algebra software

Erik Elmroth
Dept of Computing Science \& HPC2N
Umeả University, Sweden
Joint work with Fred Gustavson, Isak Jonsson \& Bo Kågström
PMAA 2006, Rennes,
September 7-9, 2006
Y vatescassaber

Matrix Computations

Fundamental and ubiquitous in computational science and its vast application areas
Library software - optimized building blocks for fundamental operations

BLAS, (Sca)LAPACK, SLICOT (see also NETLIB)
ESSL and other vendors
Portability and efficiency
Architecture evolution: HPC systems with multiple SMP nodes, several levels of caches, more functional units per CPU
Continuing demand for new and improved algorithms and software

"Data transport" in memory hierarchies

of today's computer systems
PC - cluster - supercomputer

Large, Slow, less Expensive
Key to performance: understand algorithm - architecture interaction Hierarchical blocking

The fundamental AHC triangle

Outline

Hierarchical blocking: motivation and implications
Recursive blocked templates
(Recursive blocked data structures)
Case studies:

1. General matrix multiply and add (GEMM)
2. QR factorization
3. Over- and under-determined linear systems
4. Triangular matrix equations and condition estimation
5. (Packed Cholesky factorization)

Concluding remarks

Block algorithms

- Block algorithms instead of point-wise
- Matrix operations instead of scalar ops (key to performance: $O\left(n^{3}\right)$ ops on $O\left(n^{2}\right)$ data)
(Explicit) blocking through multiple levels of nested loops/subroutine calls
- Small fraction level-1 and level-2

Bulk computations as level-3

- Typically, level-3 fraction increases with matrix size

Recursive Blocked Algorithms

Automatic variable blocking

- Replaces level-1 \& -2 ops by level-3
further improves performance
- reduces the amount of code needed (level-2 routines)
Improve on the temporal locality
Further performance improvements
Match data structure with the algorithm
- Recursive blocked data structures improve on the spatial locality

Some illustrations

Traditional blocking for a memory hierarchy

Explicit multilevel blocking

Standard (LAPACK-style) factorization block algorithms

Factor fixed size block column

Update remaining matrix

Repeat for updated matrix

LAPACK-style LU factorization

Factor fixed size block column

Repeat for updated matrix

Splittings defining independent

 and dependent tasks

Critical path of subtasks:
(1), (2), (3)

TRSM Operation: $A X=C$,
A $m \times m$ upper triangular, $C / X m \times n$

$A\left[\begin{array}{ll}X_{1} & X_{2}\end{array}\right]=\left[\begin{array}{ll}C_{1} & C_{2}\end{array}\right] \quad\left[\begin{array}{ll}A_{11} & A_{12} \\ & A_{22}\end{array}\right]\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]=\left[\begin{array}{c}C_{1} \\ C_{2}\end{array}\right]$

$$
A X_{1}=C_{1},
$$

$A X_{2}=C_{2}$.

$$
\begin{aligned}
& A_{11} X_{1}=C_{1}-A_{12} X_{2} \\
& A_{22} X_{2}=C_{2}
\end{aligned}
$$

Case Study 1
 General matrix multiply and add (GEMM)

Recursive splittings for GEMM: $C \leftarrow \beta \operatorname{op}(C)+\alpha \operatorname{op}(A) \operatorname{op}(B)$

Split $m \times n \quad m \times k \quad k \times n$
$\left.\begin{array}{rl}\mathrm{m}, \mathrm{n}, \mathrm{k} & {\left[\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]+\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]=} \\ \mathrm{m} & =\left[\begin{array}{ll}C_{11} & C_{12}\end{array}\right]+\left[\begin{array}{ll}A_{11} & A_{12}\end{array}\right]\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right] \\ {\left[\begin{array}{ll}C_{21} & C_{22}\end{array}\right]+\left[\begin{array}{ll}A_{21} & A_{22}\end{array}\right]\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]}\end{array}\right]=$
$\mathrm{n}=\left[\left[\begin{array}{l}C_{11} \\ C_{21}\end{array}\right]+\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]\left[\begin{array}{l}B_{11} \\ B_{21}\end{array}\right],\left[\begin{array}{l}C_{12} \\ C_{22}\end{array}\right]+\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]\left[\begin{array}{l}B_{12} \\ B_{22}\end{array}\right]\right]=$
$\mathrm{k} \quad=\left[\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]+\left[\begin{array}{l}A_{11} \\ A_{21}\end{array}\right]\left[\begin{array}{ll}B_{11} & B_{12}\end{array}\right]+\left[\begin{array}{l}A_{12} \\ A_{22}\end{array}\right]\left[\begin{array}{ll}B_{21} & B_{22}\end{array}\right]$

Recursive splitting - by breadth or by depth

Recursive GEMM: multi-level vs. recursive blocking

IBM PPC604, 112 MHz

Case Study 2
 QR factorization

Recursive blocked QR factorization

1. Divide A mxn in two parts (left \& right)

Stopping criteria: if $n \leq 4$ use standard algorithm
2. Factorize left hand side by a $\quad Q_{1}\binom{R_{11}}{0}=\binom{A_{11}}{\mathrm{~A}_{21}}$
3. Update right hand side $\quad\binom{R_{12}}{\mathbb{A}_{22}} \longleftarrow \mathrm{Q}^{T}\binom{\mathrm{~A}_{12}}{\mathrm{~A}_{22}}$
4. Factorize by a recursive call $\mathrm{Q}_{2} \mathrm{R}_{22}=\widetilde{\mathrm{A}}_{22}$

Combining $Q_{1}=I-Y_{1} T_{1} Y_{1}^{\top} \& Q_{2}=I-Y_{2} T_{2} Y_{2}^{\top}$
Given $Q_{1}=I-\tau_{1} v_{1} v_{1}^{T}$ and $Q_{2}=I-\tau_{2} v_{2} v_{2}^{T}$, then

$$
\mathrm{T}=\left(\begin{array}{cc}
\tau_{1} & -\tau_{1} \mathrm{v}_{1}^{\mathrm{T}} \mathrm{v}_{2} \tau_{2} \\
0 & \tau_{2}
\end{array}\right) \text { and } \mathrm{Y}=\left(\begin{array}{ll}
\mathrm{v}_{1} & \mathrm{v}_{2}
\end{array}\right)
$$

Two elementary transformations

Given $Q_{1}=I-Y_{1} T_{1} Y_{1}^{T}$ and $Q_{2}=I-\tau_{2} v_{2} v_{2}^{T}$, then

$$
\mathrm{T}=\left(\begin{array}{cc}
\mathrm{T}_{1} & -\mathrm{T}_{1} \mathrm{Y}_{1}^{\mathrm{T}} \mathrm{v}_{2} \tau_{2} \\
0 & \tau_{2}
\end{array}\right) \text { and } \mathrm{Y}=\left(\begin{array}{ll}
\mathrm{Y}_{1} & \mathrm{v}_{2}
\end{array}\right)
$$

One block and one elementary transformation
Column by column
using Level 2 operations

$$
\begin{gathered}
\text { GivenQ } \mathrm{Q}_{1}=\mathrm{I}-\mathrm{Y}_{1} \mathrm{~T}_{1} \mathrm{Y}_{1}^{\mathrm{T}} \text { and } \mathrm{Q}_{2}=\mathrm{I}-\mathrm{Y}_{2} \mathrm{~T}_{2} \mathrm{Y}_{2}^{\mathrm{T}} \text {, then } \\
\mathrm{T}=\left(\begin{array}{cc}
\mathrm{T}_{1} & -\mathrm{T}_{1} \mathrm{Y}_{1}^{\mathrm{T}} \mathrm{Y}_{2} \mathrm{~T}_{2} \\
0 & \mathrm{~T}_{2}
\end{array}\right) \text { and } \mathrm{Y}=\left(\begin{array}{ll}
\mathrm{Y}_{1} & \mathrm{Y}_{2}
\end{array}\right) \quad \begin{array}{l}
\text { Recursively, block by block } \\
\text { using Level } 3 \text { operations }
\end{array}
\end{gathered}
$$

```
RGEQR3 - Recursive algorithm for \(Q R\) factorization
```

In practice, Y and R overwrite A

```
Compute Householder transformation \#flops grows cubically with
return ( \(u, x, t\) )
else
se
\(n_{1}=\min (n / 2, n b)\)
let \(n_{1}-1 / 2\) and \(j_{1}=n_{1}+1\)
\(\left[Y_{1}, R_{1}, T_{1}\right]=\) RGEQR3 \(A\left(1: m, 1: n_{1} \longrightarrow!\right.\) Recursively factor first part
\(A\left(1: m, j_{1}: n\right) \leftarrow\left(I-Y_{1} T Y_{1}{ }^{\top}\right)^{\top} A\left(1: m, j_{1}: n\right) \quad\) ! Update second part of \(A\)
\(\left[Y_{2}, R_{2}, T_{2}\right]=R G E Q R 3 A\left(j_{1}: m, j_{1}: n\right) \quad\) ! Recursively factor second part of \(A\)
\(T_{3}=-T_{1}\left(Y_{1}{ }^{\top} Y_{2}\right) T_{2}\)
Let \(R_{3}=A\left(1: n_{1}, j_{1}: n\right)\)
Now, \(\quad \mathrm{Y}=\left(\begin{array}{ll}\mathrm{Y}_{1} & \mathrm{Y}_{2}\end{array}\right), \mathrm{R}=\left(\begin{array}{cc}\mathrm{R}_{1} & \mathrm{R}_{3} \\ 0 & \mathrm{R}_{2}\end{array}\right)\) and \(\mathrm{T}=\left(\begin{array}{cc}\mathrm{T}_{1} & \mathrm{~T}_{3} \\ 0 & \mathrm{~T}_{2}\end{array}\right)\)
return \([\mathrm{Y}, \mathrm{R}, \mathrm{T}]\)
```

```
[Y, R,T] = RGEQR3 A(1:m, 1:n)
```

[Y, R,T] = RGEQR3 A(1:m, 1:n)
if (n == 1)
if (n == 1)

Recursive blocked QR highlights

Recursive splitting controlled by nb
(splitting point $=\min (n b, n / 2), n b=32-64$)
Level 3 algorithm for generating
$Q=I-Y_{T Y}{ }^{\top}$ (compact WY) within the recursive blocked algorithm (T triangular of size <= nb)

- Replaces LAPACK level 2 and 3 algorithms

Recursive QR vs. LAPACK

Parallel speedup - 4 processor PPC604e

Case Study 3
 Over- and under-determined linear systems

LAPACK DGELS

Least squares solution
Minimum norm solution
(over-determined systems)
(under-determined systems)

Rough outline of basic algorithms

- Factor A into QR (or LQ)
- Least squares: Apply Q^{\top} (or Q) to B, solve triangular system
- Min. norm. soln.: Solve triangular system, apply Q (or Q^{\top}) to solution
Erik Elmroth, PMAA 2006, Rennes, September 7-9, 2006

Least squares recursive algorithm

```
X=RGELS (A,B,nb)
If }n\leqn
    1. Factor }A=Q[\begin{array}{l}{R}\\{0}\end{array}];\quad\tilde{B}\leftarrow\mp@subsup{Q}{}{T}B; solve RX=\tilde{B}(1:n,:
else
2. Let }A=[\begin{array}{ll}{\mp@subsup{A}{1}{}}&{\mp@subsup{A}{2}{}}\end{array}];\quadB=[\begin{array}{l}{\mp@subsup{B}{1}{\prime}}\\{\mp@subsup{B}{2}{\prime}}\end{array}]\quad\mathrm{ with nb cols in }\mp@subsup{A}{1}{},nb\mathrm{ rows in }\mp@subsup{B}{1}{
    3. Factor }\mp@subsup{A}{1}{}=\mp@subsup{Q}{1}{}[\begin{array}{c}{\mp@subsup{R}{11}{}}\\{0}\end{array}
    4. Set }[\begin{array}{l}{\mp@subsup{R}{12}{}}\\{\mp@subsup{A}{22}{}}\\{\mp@subsup{A}{22}{}}\\{\mp@subsup{B}{2}{}}\end{array}]\leftarrow\mp@subsup{Q}{1}{T}[\begin{array}{ll}{\mp@subsup{A}{2}{}}&{B}\end{array}]\quadGEMM + TRM
    5. }\mp@subsup{X}{2}{}=\operatorname{RGELS}(\mp@subsup{A}{22}{},\mp@subsup{\tilde{B}}{2}{},nb
    6. Solve R R11 X1 = \tilde{B}
endif
```

Fig. 4.2 Recursive least squares $R G E L S$ algorithm for computing the solution to $A X=B$, where A is $m \times n(m \geq n)$.

Factorization, update and triangular solve are interleaved for each block $\Rightarrow>$ data reuse

Minimum norm solution $\left\|A^{T} X-B\right\|_{F}$

Similar-style algorithm

- Basic steps (preformed recursively):

QR factorization of block columns of A
Solve triangular systems
Apply Q to solution

RGELS - Remaining Cases

- In LAPACK DGELS, $A=$ LQ is computed for
least squares solution - transposed case
minimum norm solution - non-transposed case
- Each Householder transformation is computed on a row of A, i.e., working on elements stored with stride $=$ LDA
- RGELS performs explicit transposition $C=A^{\top}$ and solves $\|C X-B\|$ or $\left\|C^{\top} X-B\right\|$ using one of the two algorithms already presented
- Transposition requires additional storage to be allocated and extra operations
+ Additional performance improvements by roughly a factor of 2 AND
+ Reduces amount of code by roughly a factor of ?

RGELS - LSQ: NRHS = $1 \quad \mid A X-B_{F}$

Case Study 4

Triangular matrix equations and condition estimation

Matrix equations

Name	Matrix equation	Acronym
Standard Sylvester (CT)	$A X-X B=C$	SYCT
Standard Lyapunov (CT)	$A X+X A^{T}=C$	LYCT
Generalized coupled Sylvester	$(A X-Y B, D X-Y E)=(C, F)$	GCSY
Standard Sylvester (DT)	$A X B^{T}-X=C$	SYDT
Standard Lyapunov (DT)	$A X A^{T}-X=C$	LYDT
Generalized Sylvester	$A X B^{T}-C X D^{T}=E$	GSYL
Generalized Lyapunov (CT)	$A X E^{T}+E X A^{T}=C$	GLYCT
Generalized Lyapunov (DT)	$A X A^{T}-E X E^{T}=C$	GLYDT

One-sided (top) and two-sided (bottom)

Recursive blocked SYCT template

Case 1: $1<=n<=m / 2 \quad A(m \times m), B(n \times n)$ upper tri.
$\left[\begin{array}{l|l}A_{11} & A_{12} \\ \hline & A_{22}\end{array}\right]\left[\begin{array}{ll}X_{11} & X_{12} \\ \hline X_{21} & X_{22}\end{array}\right]-\left[\begin{array}{ll}X_{11} & X_{12} \\ \hline X_{21} & X_{22}\end{array}\right]\left[\begin{array}{ll}B_{11} & B_{12} \\ & B_{22}\end{array}\right]=\left[\begin{array}{ll}C_{11} & C_{12} \\ \hline C_{21} & C_{22}\end{array}\right]$
Case 2: $1<=m<=n / 2$
$\left[\begin{array}{ll}A_{11} & A_{12} \\ & A_{22}\end{array}\right]\left[\begin{array}{l|l}X_{11} & X_{12} \\ X_{21} & X_{22}\end{array}\right]-\left[\begin{array}{l|l}X_{11} & X_{12} \\ X_{21} & X_{22}\end{array}\right]\left[\begin{array}{l|l}B_{11} & B_{12} \\ \hline & B_{22}\end{array}\right]=\left[\begin{array}{l|l}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right]$
Case 3: $n / 2<m<2 n$
$\left[\begin{array}{l|l|l}A_{11} & A_{12} \\ \hline & A_{22}\end{array}\right]\left[\begin{array}{l|l|l}X_{11} & X_{12} \\ \hline X_{21} & X_{22}\end{array}\right]-\left[\begin{array}{l|l|l}X_{11} & X_{12} \\ \hline X_{21} & X_{22}\end{array}\right]\left[\begin{array}{l|l|l}B_{11} & B_{12} \\ \hline & B_{22}\end{array}\right]=\left[\begin{array}{ll|l}C_{11} & C_{12} \\ \hline C_{21} & C_{22}\end{array}\right]$

Recursive SYCT - Case 3

Triangular generalized coupled Sylvester equation - GCSY

$A X-Y B=C$
$D X-Y E=F$
(A, D) and (B, E) in generalized Schur form

Solution (X, Y) overwrites r.h.s. (C, F)

RECSY library

Recursive blocked algorithms for solving reduced matrix equations
Recursion implemented in F90
SMP versions using OpenMP
F77 wrappers for LAPACK and SLICOT routines

```
www.cs.umu.se/research/parallel/recsy/
```


Recursive blocking ...

creates new algorithms for linear algebra software
expresses dense linear algebra algorithms entirely in terms of level-3 BLAS like matrix-matrix operations introduces an automatic variable blocking that targets multiple levels of a deep memory hierarchy can also be used to define hybrid data formats for storing block-partitioned matrices (general, triangular, symmetric, packed) - L1, L2 and TLB misses are minimized for certain block sizes (Park-Hong-Prasanna' 03)

High-performance software

Make use of data locality and superscalar optimization techniques

Recursive blocked algorithms improve on the temporal data locality Hybrid data formats improve on the spatial data locality
Portable and generic superscalar kernels ensure that all functional units on the processor(s) are used efficiently

Acknowledgements

Fred Gustavson, Isak Jonsson, Bo Kågström (co-authors and co-workers)
André Henriksson, Olov Gustavsson and Andreas Lindkvist (earlier MSc students)

- Bjarne Andersén, Jerzy Wasniewski (e.g., packed Cholesky)
Robert Granat (PhD student)
HPC and LA team at Umeå University
Community that do related and complementary work!

