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Matrix Computations
° Fundamental and ubiquitous in computational 

science and its vast application areas
° Library software – optimized building blocks 

for fundamental operations
° BLAS, (Sca)LAPACK, SLICOT (see also NETLIB)
° ESSL and other vendors
° Portability and efficiency

° Architecture evolution: HPC systems with 
multiple SMP nodes, several levels of caches, 
more functional units per CPU

° Continuing demand for new and improved 
algorithms and software
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Communication Media

“Data transport” in memory 
hierarchies

° of today’s computer systems
° PC - cluster - supercomputer

Small, Fast, Expensive

Large, Slow, less Expensive

caches
local memory

remote memory

registers

Key to performance: understand algorithm - architecture interaction
Hierarchical blocking
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The fundamental AHC triangle
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Outline
° Hierarchical blocking: motivation and implications
° Recursive blocked templates
° (Recursive blocked data structures)
° Case studies:

° 1. General matrix multiply and add (GEMM)
° 2. QR factorization
° 3. Over- and under-determined linear systems
° 4. Triangular matrix equations and condition estimation
° 5. (Packed Cholesky factorization)

° Concluding remarks
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Block algorithms
° Block algorithms instead of point-wise
° Matrix operations instead of scalar ops

(key to performance: O(n3) ops on O(n2) data)

° (Explicit) blocking through multiple levels of 
nested loops/subroutine calls

° Small fraction level-1 and level-2
° Bulk computations as level-3
° Typically, level-3 fraction increases with 

matrix size
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Recursive Blocked Algorithms
° Automatic variable blocking
° Replaces level-1 & -2 ops by level-3

° further improves performance 
° reduces the amount of code needed (level-2 

routines)
° Improve on the temporal locality

Further performance improvements 
° Match data structure with the algorithm
° Recursive blocked data structures improve 

on the spatial locality
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Some illustrations



Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Traditional blocking for a 
memory hierarchy

Explicit multi-
level blocking
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Standard (LAPACK-style) 
factorization block 
algorithms

Factor fixed size
block column

Update remaining
matrix

Repeat for updated matrix

Factorization completed

Update completed
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L21

L11
U11

LAPACK-style LU factorization
Factor fixed size
block column

Repeat for updated matrix

A21

A11
A12

A12

L11 U12 = A12

A22←A22-L21U12
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Recursion template for one-
sided matrix factorization

1. Partition
2. Factor left hand side
3. Update right hand side
4. Factor right hand side

Factorization completed

Update completed

Fits low level 
in memory hierarchy

Fits high level in 
memory hierarchy
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Splittings defining independent 
and dependent tasks

Critical path of subtasks:
(1), (2), (3)
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TRSM Operation: AX = C, 
A mxm upper triangular, C/X mxn
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Case Study 1
General matrix multiply and add 

(GEMM)
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Recursive splittings for GEMM:
)(op)(op)(op BACC αβ +←

m x n m x k k x nSplit

m, n, k

m

n

k
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Recursive splitting - by breadth 
or by depth
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Recursive GEMM: multi-level 
vs. recursive blocking

IBM PPC604,
112 MHz

ATLAS

RGEMM

Explicit
blocking
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Case Study 2
QR factorization
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Recursion template for one-
sided matrix factorization

1. Partition
2. Factor left hand side
3. Update right hand side
4. Factor right hand side

Factorization completed

Update completed
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1. Divide A mxn in two parts 
(left & right)

2. Factorize left hand side by a 
recursive call

3. Update right hand side 

4. Factorize by a recursive call
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Stopping criteria:
if n ≤ 4 use 
standard algorithm

Need to combine Q1 = I – Y1T1Y1
T & Q2 = I – Y2T2Y2

T
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Combining Q1 = I – Y1T1Y1
T & Q2 = I – Y2T2Y2

T
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Recursively, block by block
using Level 3 operations
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RGEQR3 - Recursive algorithm for QR 
factorization

[Y, R, T] = RGEQR3 A(1:m, 1:n) 

if (n == 1): 

Compute Householder transformation Q = I - t u uT, such that QT A = (x, 0) T

return (u, x, t)
else

let n1 = n/2  and  j1 = n1 + 1

[Y1, R1, T1] = RGEQR3 A(1:m, 1:n1) ! Recursively factor first part

A(1:m, j1:n) ← (I - Y1 T Y1
T) T A(1:m, j1:n) ! Update second part of A

[Y2, R2, T2] = RGEQR3 A(j1:m, j1:n) ! Recursively factor second part of A

T3 = - T1(Y1
T Y2) T2

Let R3 = A(1:n1, j1:n)

Now,

return [Y, R, T]
end
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In practice, Y and 
R overwrite A

#flops grows cubically with 
# Householder transformations 
being aggregated (compact WY)!

n1 = min(n/2, nb)
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Recursive blocked QR highlights
° Recursive splitting controlled by nb 

(splitting point = min(nb, n/2), nb = 32-64)
° Level 3 algorithm for generating 

Q = I – YTYT (compact WY) within the 
recursive blocked algorithm (T triangular 
of size <= nb)

° Replaces LAPACK level 2 and 3 algorithms
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Recursive QR vs. LAPACK

1.2-1.4x

Up to 1.95x

m = n m >> n
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Parallel speedup - 4 processor PPC604e
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Case Study 3
Over- and under-determined
linear systems

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

LAPACK DGELS

F

T
F

BXABAX −− or      Solve

Least squares solution
(over-determined systems)

Minimum norm solution
(under-determined systems)

A = QR A = QR
A = LQ

Rough outline of basic algorithms
• Factor A into QR (or LQ)
• Least squares: Apply QT (or Q) to B, solve triangular system 
• Min. norm. soln.: Solve triangular system, apply Q (or QT) to solution
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Least squares recursive 
algorithm 

GEMM + TRSM

GEMM + TRMM

GEMM + TRMM + TRSM

Factorization, update and triangular solve 
are interleaved for each block => data reuse
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Minimum norm solution
° Similar-style algorithm

° Basic steps (preformed recursively):
° QR factorization of block columns of A
° Solve triangular systems
° Apply Q to solution

F

T BXA − 
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RGELS - Remaining Cases
° In LAPACK DGELS, A = LQ is computed for

° least squares solution - transposed case
° minimum norm solution - non-transposed case

° Each Householder transformation is computed on a row 
of A, i.e., working on elements stored with stride = LDA

° RGELS performs explicit transposition C = AT and solves 
||CX - B|| or ||CTX - B|| using one of the two algorithms 
already presented

— Transposition requires additional storage to be 
allocated and extra operations

+ Additional performance improvements by roughly a 
factor of 2 AND 

+ Reduces amount of code by roughly a factor of 2
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RGELS - LSQ: NRHS = 1 FBAX −

Performance
ratio
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RGELS - LSQ: transposed, M = 50 F
T BXA −

Performance
ratio
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Case Study 4
Triangular matrix equations and 

condition estimation
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Matrix equations

One-sided (top) and two-sided (bottom)
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Recursive blocked SYCT template
Case 1: 1 <= n <= m/2

Case 2: 1 <= m <= n/2

Case 3: n/2 < m < 2n

A (m × m), B (n × n) upper tri.
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Recursive SYCT – Case 3

S S

S

G G

G
G

S

Erik Elmroth, PMAA 2006, Rennes, September 7 – 9, 2006

Triangular generalized coupled 
Sylvester equation - GCSY

AX – YB = C
DX – YE = F

(A, D) and (B, E) in 
generalized Schur 
form

Solution (X, Y) over-
writes r.h.s. (C, F)

LAPACK

Explicit //

rtrgcsy (2.6x)

(1.6x)
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RECSY library
° Recursive blocked algorithms for 

solving reduced matrix equations
° Recursion implemented in F90
° SMP versions using OpenMP
° F77 wrappers for LAPACK and 

SLICOT routines
° www.cs.umu.se/research/parallel/recsy/
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Recursive blocking ...
° creates new algorithms for linear algebra 

software
° expresses dense linear algebra algorithms 

entirely in terms of level-3 BLAS like 
matrix-matrix operations

° introduces an automatic variable blocking
that targets multiple levels of a deep 
memory hierarchy

° can also be used to define hybrid data 
formats for storing block-partitioned 
matrices (general, triangular, symmetric, 
packed) - L1, L2 and TLB misses are minimized for 
certain block sizes (Park-Hong-Prasanna´03)
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High-performance software

° Make use of data locality and 
superscalar optimization techniques
° Recursive blocked algorithms improve on 

the temporal data locality
° Hybrid data formats improve on the 

spatial data locality
° Portable and generic superscalar kernels

ensure that all functional units on the 
processor(s) are used efficiently 
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