Parallel System Solvers for the Navier-Stokes Equations

Murat Manguoglu Ahmed Sameh Faisal Saied **Purdue University**

In collaboration with Tayfun Tezduyar, Rice University

PMAA, IRISA, Rennes, France, September 7-9, 2006

Outline

- 1. Present preconditioned schemes for solving the resulting "segregated" and "reordered" linear systems.
- 2. Use for the stabilized and unstabilized finite element formulations.
- 3. Effectiveness of solvers demonstrated on model problems in
 - time-accurate solutions in fluid-structure/solid interaction
 - steady-state case
- 4. Concluding remarks.

Applications

- Space-time flow computation:
 - a simplified parachute model
 - flow past a hemisphere.
- Particulate flow
- Incompressible fluid flow within a "leaky" lid-driven cavity problem steady-state case.

Adaptive Tolerances

Linear Systems

$$\begin{bmatrix} A & B \\ C^T & G \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

- $A \neq A^T$:= $(n \times n)$, rank = n
- B, C := $(n \times m)$, maximal col. rank <= m
- *G* := symmetric +*ve* semi-definite

Preconditioned Scheme

Solving
$$\hat{M}u = c$$

Solve
$$\begin{pmatrix} \hat{A} & B \\ C^T & G \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$

Since

$$\begin{pmatrix} \hat{A} & B \\ C^T & G \end{pmatrix} = \begin{pmatrix} \hat{A} & 0 \\ C^T & I \end{pmatrix} \begin{pmatrix} \hat{A}^{-1} & 0 \\ 0 & G - C^T \hat{A}^{-1} B \end{pmatrix} \begin{pmatrix} \hat{A} & B \\ 0 & I \end{pmatrix}$$

Then solution scheme is given by,

• solve
$$\hat{A}\mathbf{v} = \mathbf{a}$$

• solve $(G - C^T \hat{A}^{-1}B)\mathbf{w} = \mathbf{b} - C^T \mathbf{v}$
• solve $\hat{A}\mathbf{v} = \mathbf{a} - B\mathbf{w}$

- Solve $\hat{A}v = h$
 - \hat{A} = approximate *LU* factorization of *E*, or
 - \hat{A}^{-1} : approximate sparse inverse of *E* e.g., $\min \left\| I - E \hat{A}^{-1} \right\|_{F}$ for a given sparsity structure of \hat{A}^{-1} .
 - Action of \hat{A}^{-1} is realized via iterative solvers involving E.
- Solve $(G C^T \hat{A}^{-1} B)y = h$

using a Krylov subspace method with a relaxed stopping criterion

$$\left\|\boldsymbol{r}_{k}\right\|_{2} / \left\|\boldsymbol{r}_{0}\right\|_{2} < \text{tol.}$$

Convergence

Need to have $\rho(I - \hat{M}^{-1}M) < 1$

•
$$\lambda (I - \hat{M}^{-1}M) := 0, \mu$$

•
$$\mu = \lambda [(I + K)(I - \hat{A}^{-1}E)]$$

•
$$K = \hat{A}^{-1}B(G - C^T \hat{A}^{-1}B)^{-1}C^T$$

 $\lambda(K) = \lambda[(C^T \hat{A}^{-1} B)(G - C^T \hat{A}^{-1} B)^{-1}]$

•
$$\rho(I - \hat{A}^{-1}E) \le \alpha < 1$$

Space-Time Computation

1. Simplified Parachute Model

velocity field

Flow Results:

1	1	

The Linear System Matrix Ã

Parachute model...

- Re = 1000
- Choose E = A and remove outer layer.
- • $\hat{A} = LU$

incomplete LU-factorization of *A* with no fill-in, or any of its parallel counterparts.

Solve
$$\begin{bmatrix} A & B \\ C^T & G \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

via Richardson scheme: $\|r_{Richardson}\|_2 \le 10^{-5}$.
 $\hat{M} = \begin{bmatrix} LU & B \\ C^T & G \end{bmatrix}$
 $\begin{bmatrix} u_{k+1} \\ p_{k+1} \end{bmatrix} = \begin{bmatrix} u_k \\ p_k \end{bmatrix} + \hat{M}^{-1} \begin{bmatrix} f \\ g \end{bmatrix} - \begin{pmatrix} A & B \\ C^T & G \end{pmatrix} \begin{pmatrix} u_k \\ p_k \end{bmatrix} \end{bmatrix}$

Note:

Solve $(G - C^T \hat{A}^{-1}B)w = s$ via bicgstab with relative residual $< 10^{-1}$. G1 := preconditioner

Richardson: Incomplete LU - Bicgstab (10⁻¹)

Outer Iterations (~35 inner/one outer)

2. Flow past an inflatable hemisphere

- Fluctuating inflow.
- *Reynold's number* = 100
- System under consideration is extracted at a given time step.
- Cond(A) ~ 1.5 e+3
- Cond [A, B; C^T, G]

~ 0.8 e+5

Flow past a hemisphere

Linear System

Flow past a hemisphere...

- Re = 100.
- Choose E = A and remove outer layer.
- Action of Â⁻¹ is realized via solving systems of the form A x = b using Bicgstab with a diagonal approximate inverse of A as a preconditioner.

Preconditioned Scheme

Flow past a hemisphere...

- Action of Â⁻¹ is realized via solving systems of the form A x = b using Bicgstab with a diagonal approximate inverse of A as a preconditioner.
 - # of bicgstab iterations < 20 for relative residuals of $O(10^{-9})$.
- Solve S y = h, where S = $(G C^T \hat{A}^{-1} B)$, via bicgstab with a diag. approximate inverse of S to achieve a relative residual < 10⁻².

Solve
$$\begin{bmatrix} A & B \\ C^{T} & G \end{bmatrix} \begin{bmatrix} u \\ p \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

via Richardson scheme with relative residual < 10⁻⁶
 $\hat{M} = \begin{pmatrix} \hat{A} & B \\ C^{T} & G \end{pmatrix}$

$$\begin{bmatrix} u_{k+1} \\ p_{k+1} \end{bmatrix} = \begin{bmatrix} u_k \\ p_k \end{bmatrix} + \hat{M}^{-1} \begin{bmatrix} f \\ g \end{bmatrix} - \begin{pmatrix} A & B \\ C^{T} & G \end{pmatrix} \begin{pmatrix} u_k \\ p_k \end{bmatrix}$$

Note:

Solve $(G - C^T \hat{A}^{-1}B)y = h$ via bicgstab with relative residual $< 10^{-2}$. Preconditioner: diagonal approximate inverse

Convergence

Need to have $\rho(I - \hat{M}^{-1}M) < 1$

•
$$\lambda (I - \hat{M}^{-1}M) := 0, \mu$$

•
$$\mu = \lambda [(I + K)(I - \hat{A}^{-1}E)]$$

•
$$K = \hat{A}^{-1}B(G - C^T \hat{A}^{-1}B)^{-1}C^T$$

 $\lambda(K) = \lambda[(C^T \hat{A}^{-1} B)(G - C^T \hat{A}^{-1} B)^{-1}]$

•
$$\rho(I - \hat{A}^{-1}E) \le \alpha < 1$$

Convergence of Richardson Scheme

Outer Iterations

37 inner Bicgstab(10⁻²) iterations for solving S y = h / outer iteration

Ahmed Sameh

Particulate Flow

Motivating Application: Particulate Flows

Modeling Particulate Flows

 Navier-Stokes equations coupled with Newton's equations for particles ______

$$\rho \frac{\partial u}{\partial t} + \rho(u \bullet \nabla u) = \rho g - \nabla p + \nabla \bullet \tau$$
$$\nabla \bullet u = 0$$
$$M \frac{dU}{dt} = F$$
$$\frac{dX}{dt} = U$$
$$\tau = \mu(\nabla u + \nabla u^{T})$$

- No-slip on particle surface.
- Unstructured mesh, generated after every few steps.
- Mixed finite elements approximation: *P*2/*P*1 pair of elements.

Particulate Flow:

- viscosity = 1/100
- *G* = zero matrix
- $E = A_s = (A + A^T)/2$
- \hat{A}^{-1} := diagonal approximate inverse of A_s , i.e. $\min \left\| I - \hat{A}^{-1} A_s \right\|_F$

•
$$\rho(I - \hat{A}^{-1}A_s) = \alpha < 1$$

Preconditioned Scheme: Case 2

Frobenius Norm of the Skew-Symmetric Part of \boldsymbol{A}

• To quantify the skew-symmetry, we introduce the "degree of skewness" measured by $\frac{\left\|A - A^{T}\right\|_{F}}{\left\|A + A^{T}\right\|_{F}} = \left\|A_{ss}\right\|_{F} / \left\|A_{s}\right\|_{F}.$

Solving
$$\hat{M}u = c$$
 ; **Case 2**

Solve
$$\begin{pmatrix} \hat{A} & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$

Since

$$\begin{pmatrix} \hat{A} & B \\ B^T & 0 \end{pmatrix} = \begin{pmatrix} \hat{A} & 0 \\ B^T & I \end{pmatrix} \begin{pmatrix} \hat{A}^{-1} & 0 \\ 0 & -\hat{G} \end{pmatrix} \begin{pmatrix} \hat{A} & B \\ 0 & I \end{pmatrix}, \text{ with } \hat{G} = B^T \hat{A}^{-1} B,$$

the solution scheme is given by,

•
$$\boldsymbol{v} = \hat{A}^{-1}\boldsymbol{a}$$

• $\hat{G}w = B^T v - b$ via CG with $\|r_k\|_2 / \|r_0\| \le 10^{-2}$.

•
$$\mathbf{v} = \hat{A}^{-1}(\mathbf{a} - B\mathbf{w})$$

Convergence....

• $\lambda (I - \hat{M}^{-1}M) := 0, \mu$

•
$$\mu = \lambda [(I - K)(I - \hat{A}^{-1}A_s)]$$

• $\lambda(K) = \lambda [\hat{A}^{-1/2} B (B^T \hat{A}^{-1} B)^{-1} B^T \hat{A}^{-1/2}]$; [a projector]

• Thus
$$\rho(I - \hat{M}^{-1}M) < 1$$

$$\hat{A}^{-1} := SPAI(A_s)$$
 [diagonal]
 $\alpha = \rho(I - \hat{A}^{-1}A_s) < 1$

t	#	system	Gmres(k)		
	particles	size	k	outer	inner
20 Δ <i>t</i>	20	8,777	20	1	13
100 Δ <i>t</i>	240	95,749	50	3	14
200 <i>\Delta t</i>	240	111,326	50	4	15

Robustness of solver $(\|\boldsymbol{r}_k\|_2 / \|\boldsymbol{r}_0\|_2 < 10^{-6})$

• Gmres with approx. LU factorizations of \tilde{A} (as preconditioners) has failed.

Driven Cavity: steady-state case

Case 3...

- Square domain: $-1 \le x, y \le 1$ B.C^{S.}: $u_x = u_y = 0$ on x, y = -1; x = 1 $u_x = 1, u_y = 0$ on y = 1
- Picard's iterations; Q2/Q1 elements: Linearized equations (Oseen problem)
- $G \equiv 0$
- $E = A_s = (A + A^T)/2$
- viscosity: 0.1, 0.02, 0.01,0.002

Preconditioned Scheme

Case 3...

 A_s = P + N; [Axelsson & Kolotolina] P(i,i) = 0 ; P(i,j) ≥ 0 N(i,i) > 0 ; N(i,j) ≤ 0
 D e = P e

D :=diagonal ; $e^T = (1, 1, ..., 1)$

• $\hat{A} = D + N$

 \hat{A} is a Stieltjes matrix $\hat{A}(i,i) > 0$; $\hat{A}(i,j) \le 0$; $\hat{A}^{-1} > 0$

Case 3: Scheme I

Solving
$$\hat{M}u = c$$
 ; **Case 3**

Solve
$$\begin{pmatrix} \hat{A} & B \\ B^T & 0 \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$

Since

$$\begin{pmatrix} \hat{A} & B \\ B^T & 0 \end{pmatrix} = \begin{pmatrix} \hat{A} & 0 \\ B^T & I \end{pmatrix} \begin{pmatrix} \hat{A}^{-1} & 0 \\ 0 & -\hat{G} \end{pmatrix} \begin{pmatrix} \hat{A} & B \\ 0 & I \end{pmatrix}, \text{ with } \hat{G} = B^T \hat{A}^{-1} B$$

we solve the following systems using pcg with $\|\mathbf{r}_k\|_2 / \|\mathbf{r}_0\| \le 10^{-1}$.

•
$$\hat{A}v = a$$

•
$$\hat{G}w = B^T v - b$$

• $\hat{A}v = a - Bw$

Each requires no more than 2 pcg iterations.

Convergence of Richardson Scheme

$$\rho(I - \hat{A}^{-1}A_s) = \sim 0.37$$

for all mesh sizes: 2^k × 2^k
 k = 4, 5, 6, 7, 8,...

for viscosity:
 0.1; 0.02; 0.01; 0.002

Case 3: Scheme II

Linear system for 128 x 128 grid

after RCM reordering

after approx. min. degree reordering

after spectral reordering

Spectral Reordering

- Obtain second smallest eigenpairs of the Laplacian.
- Sort the elements of the eigenvector (Fielder vector).
- Permute the rows and columns of the matrix using the sorted order.
- W : [sum of magnitudes of the elements within the selected band] / [sum of the magnitudes of all the matrix elements]

- W = 99.9 %, for bandwidth = 1401, and viscosity=1/50.

MA48 as a preconditioner for GMRES on a uniprocessor

Droptol	# of iter.	T(factor.)	T(GMRES iters.)	nnz(L+U)	final residual	v
0	2	142.7	0.3	7,195,157	2.07E-13	1/50
1.00E-04	24	115.5	1.4	2,177,181	2.83E-09	1/50
1.00E-03	248	109.6	17.3	1,611,030	5.11E-08	1/50

** for drop tolerance = .0001, total time ~ 117 sec. ** No convergence for a drop tolerance of 10⁻²

Spike – Pardiso for solving systems involving the banded preconditioner

- On 4 nodes (8 CPU's) of a Xeon-Intel cluster:
 - bandwidth of extracted preconditioner = 1401
 - *total time = 16 sec.*
 - *# of Gmres iters. = 131*
 - -2-norm of residual = 10^{-7}
- Speed improvement over sequential procedure with drop tolerance = .0001:
 117/16 ~ 7.3

Conclusion & Future Work

- **1. Proposed nested scheme is:**
 - versatile with appropriate choice of preconditioners at the three nesting levels,
 - suitable for implementation on parallel computing platforms.
- 2. Reordering the resulting "segregated" system yields often a prominent band that can be used as an effective parallel preconditioner.
- 3. Plan to build an environment for construction of these solvers with fewer input parameters from the application user.

Thank you!