
New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

New Class of Block Matrix Orderings for the
Parallel Two-Sided Jacobi SVD Algorithm

Gabriel Okša 1, Ondrej Sýkora 2, Marián Vajteršic 3

1Institute of Mathematics
Slovak Academy of Sciences

Bratislava, Slovakia

2Department of Computer Science
Loughborough University

Loughborough, United Kingdom

3Institute of Scientific Computing
University of Salzburg

Salzburg, Austria

PMAA 06, Rennes, France, September 7-9, 2006

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Outline

1 Problem formulation

2 Parallel Two-Sided Block-Jacobi Algorithm

3 Known Types of Block Ordering

4 New Clique-Based Block Ordering

5 First numerical results

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Our task

Compute in parallel the Singular Value Decomposition
(SVD) of a complex matrix A of the size m × n, m ≥ n:

A = U
(

Σ
0

)
V H .,

where U(m ×m) and V (n × n) are orthogonal and
Σ = diag(σi) with σ1 ≥ σ2 ≥ · · · ≥ σn.
Numerically stable way of computation:

one- or two-sided block-Jacobi methods;

large degree of parallelism.

Target architecture:

distributed memory machines (parallel supercomputers
and clusters) with Message Passing Interface (MPI).

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Our task

Compute in parallel the Singular Value Decomposition
(SVD) of a complex matrix A of the size m × n, m ≥ n:

A = U
(

Σ
0

)
V H .,

where U(m ×m) and V (n × n) are orthogonal and
Σ = diag(σi) with σ1 ≥ σ2 ≥ · · · ≥ σn.
Numerically stable way of computation:

one- or two-sided block-Jacobi methods;

large degree of parallelism.

Target architecture:

distributed memory machines (parallel supercomputers
and clusters) with Message Passing Interface (MPI).

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Our task

Compute in parallel the Singular Value Decomposition
(SVD) of a complex matrix A of the size m × n, m ≥ n:

A = U
(

Σ
0

)
V H .,

where U(m ×m) and V (n × n) are orthogonal and
Σ = diag(σi) with σ1 ≥ σ2 ≥ · · · ≥ σn.
Numerically stable way of computation:

one- or two-sided block-Jacobi methods;

large degree of parallelism.

Target architecture:

distributed memory machines (parallel supercomputers
and clusters) with Message Passing Interface (MPI).

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Main structure of algorithm

Implemented on p processors, an even blocking factor
` = 2p is used together with some ordering of
subproblems.

Each processor contains 2 block columns of A, U, V .

Algorithm is based on the SVDs of 2× 2-block
subproblems:

Sij =

(
Aii Aij

Aji Ajj

)
.

Global termination criterion:

F (A, `) =

√√√√ ∑̀
i,j=1, i 6=j

‖Aij‖2
F < ε , ε ≡ prec · ‖A‖F .

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Main structure of algorithm

Implemented on p processors, an even blocking factor
` = 2p is used together with some ordering of
subproblems.

Each processor contains 2 block columns of A, U, V .

Algorithm is based on the SVDs of 2× 2-block
subproblems:

Sij =

(
Aii Aij

Aji Ajj

)
.

Global termination criterion:

F (A, `) =

√√√√ ∑̀
i,j=1, i 6=j

‖Aij‖2
F < ε , ε ≡ prec · ‖A‖F .

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Main structure of algorithm

Implemented on p processors, an even blocking factor
` = 2p is used together with some ordering of
subproblems.

Each processor contains 2 block columns of A, U, V .

Algorithm is based on the SVDs of 2× 2-block
subproblems:

Sij =

(
Aii Aij

Aji Ajj

)
.

Global termination criterion:

F (A, `) =

√√√√ ∑̀
i,j=1, i 6=j

‖Aij‖2
F < ε , ε ≡ prec · ‖A‖F .

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Main structure of algorithm

Implemented on p processors, an even blocking factor
` = 2p is used together with some ordering of
subproblems.

Each processor contains 2 block columns of A, U, V .

Algorithm is based on the SVDs of 2× 2-block
subproblems:

Sij =

(
Aii Aij

Aji Ajj

)
.

Global termination criterion:

F (A, `) =

√√√√ ∑̀
i,j=1, i 6=j

‖Aij‖2
F < ε , ε ≡ prec · ‖A‖F .

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Main structure of algorithm (cont.)

Local termination criterion:

F (Sij , `) =
√
‖Aij‖2

F + ‖Aji‖2
F < δ , δ ≡ ε ·

√
2

` (`− 1)
.

Main question: How to order 2× 2-block subproblems
to be efficient?

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Main structure of algorithm (cont.)

Local termination criterion:

F (Sij , `) =
√
‖Aij‖2

F + ‖Aji‖2
F < δ , δ ≡ ε ·

√
2

` (`− 1)
.

Main question: How to order 2× 2-block subproblems
to be efficient?

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Cyclic block ordering

Let the matrix A be cut into `× ` block structure with
` = 2p where p is the number of processors..

Cyclic block-row ordering define 2× 2block
subproblems by block rows:
(A12, A21), (A13, A31), . . . , (A1`, A`1),
(A23, A32), (A24, A42), . . . , (A2`, A`2),
. . . , (A`−1,`, A`,`−1).

Cyclic bloc-column ordering is defined similarly.

Parallel method: Take p consecutive pairs from the list,
each pair defines one 2× 2-block SVD subproblem for
one processor.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Cyclic block ordering

Let the matrix A be cut into `× ` block structure with
` = 2p where p is the number of processors..

Cyclic block-row ordering define 2× 2block
subproblems by block rows:
(A12, A21), (A13, A31), . . . , (A1`, A`1),
(A23, A32), (A24, A42), . . . , (A2`, A`2),
. . . , (A`−1,`, A`,`−1).

Cyclic bloc-column ordering is defined similarly.

Parallel method: Take p consecutive pairs from the list,
each pair defines one 2× 2-block SVD subproblem for
one processor.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Cyclic block ordering

Let the matrix A be cut into `× ` block structure with
` = 2p where p is the number of processors..

Cyclic block-row ordering define 2× 2block
subproblems by block rows:
(A12, A21), (A13, A31), . . . , (A1`, A`1),
(A23, A32), (A24, A42), . . . , (A2`, A`2),
. . . , (A`−1,`, A`,`−1).

Cyclic bloc-column ordering is defined similarly.

Parallel method: Take p consecutive pairs from the list,
each pair defines one 2× 2-block SVD subproblem for
one processor.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Cyclic block ordering

Let the matrix A be cut into `× ` block structure with
` = 2p where p is the number of processors..

Cyclic block-row ordering define 2× 2block
subproblems by block rows:
(A12, A21), (A13, A31), . . . , (A1`, A`1),
(A23, A32), (A24, A42), . . . , (A2`, A`2),
. . . , (A`−1,`, A`,`−1).

Cyclic bloc-column ordering is defined similarly.

Parallel method: Take p consecutive pairs from the list,
each pair defines one 2× 2-block SVD subproblem for
one processor.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Cyclic block ordering (cont.)

During one sweep of the method each non-diagonal
block of A is nullified exactly once.

Main problem: The ordering is prescribed and fixed,
there is no consideration about an actual status (e.g.,
Frobenius norm) of individual blocks—may be very
unefficient in decreasing the off-norm.

Significant amount of data (e.g., whole column blocks)
need to be explicitly transferred among processors at
the beginning of each parallel step.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Cyclic block ordering (cont.)

During one sweep of the method each non-diagonal
block of A is nullified exactly once.

Main problem: The ordering is prescribed and fixed,
there is no consideration about an actual status (e.g.,
Frobenius norm) of individual blocks—may be very
unefficient in decreasing the off-norm.

Significant amount of data (e.g., whole column blocks)
need to be explicitly transferred among processors at
the beginning of each parallel step.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Cyclic block ordering (cont.)

During one sweep of the method each non-diagonal
block of A is nullified exactly once.

Main problem: The ordering is prescribed and fixed,
there is no consideration about an actual status (e.g.,
Frobenius norm) of individual blocks—may be very
unefficient in decreasing the off-norm.

Significant amount of data (e.g., whole column blocks)
need to be explicitly transferred among processors at
the beginning of each parallel step.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Dynamic Block Ordering

Main idea: Take into consideration the actual status of
a matrix and, in one parallel iterations step (p
subproblems) decrease the off-norm as much as
possible.
This task can be translated into the language of graph
theory:

1 Construct the weighted complete graph G with `
vertices (` = 2p is the blocking factor), where the edge
(i , j) has the weight ‖Aij‖2

F + ‖Aji‖2
F.

2 At the beginning of each parallel iteration step, find the
maximum-weight perfect matching on G, which defines
the p SVD subproblems—only polynomial complexity
O(`3).

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Dynamic Block Ordering

Main idea: Take into consideration the actual status of
a matrix and, in one parallel iterations step (p
subproblems) decrease the off-norm as much as
possible.
This task can be translated into the language of graph
theory:

1 Construct the weighted complete graph G with `
vertices (` = 2p is the blocking factor), where the edge
(i , j) has the weight ‖Aij‖2

F + ‖Aji‖2
F.

2 At the beginning of each parallel iteration step, find the
maximum-weight perfect matching on G, which defines
the p SVD subproblems—only polynomial complexity
O(`3).

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Dynamic Block Ordering

Main idea: Take into consideration the actual status of
a matrix and, in one parallel iterations step (p
subproblems) decrease the off-norm as much as
possible.
This task can be translated into the language of graph
theory:

1 Construct the weighted complete graph G with `
vertices (` = 2p is the blocking factor), where the edge
(i , j) has the weight ‖Aij‖2

F + ‖Aji‖2
F.

2 At the beginning of each parallel iteration step, find the
maximum-weight perfect matching on G, which defines
the p SVD subproblems—only polynomial complexity
O(`3).

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Dynamic Block Ordering

Main idea: Take into consideration the actual status of
a matrix and, in one parallel iterations step (p
subproblems) decrease the off-norm as much as
possible.
This task can be translated into the language of graph
theory:

1 Construct the weighted complete graph G with `
vertices (` = 2p is the blocking factor), where the edge
(i , j) has the weight ‖Aij‖2

F + ‖Aji‖2
F.

2 At the beginning of each parallel iteration step, find the
maximum-weight perfect matching on G, which defines
the p SVD subproblems—only polynomial complexity
O(`3).

Example

1V V

V

VV

V6

5 4

3

2

Figure: Maximum-weight perfect matching for ` = 6 (p = 3).

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Clique-Based Block Ordering

Physical blocking factor: for p processors, let A be
partitioned into p block columns and block rows, each
processor contains one block column.

Logical blocking factor: ` = p/r for some integer r .

In each parallel iteration step, ` local SVDs are
computed in parallel where each SVD is of block-order
r × r and comprises 2r off-diagonal blocks of A.

Our aim: Decrease the off-diagonal Frobenius norm in
each parallel iteration step as much as possible.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Clique-Based Block Ordering

Physical blocking factor: for p processors, let A be
partitioned into p block columns and block rows, each
processor contains one block column.

Logical blocking factor: ` = p/r for some integer r .

In each parallel iteration step, ` local SVDs are
computed in parallel where each SVD is of block-order
r × r and comprises 2r off-diagonal blocks of A.

Our aim: Decrease the off-diagonal Frobenius norm in
each parallel iteration step as much as possible.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Clique-Based Block Ordering

Physical blocking factor: for p processors, let A be
partitioned into p block columns and block rows, each
processor contains one block column.

Logical blocking factor: ` = p/r for some integer r .

In each parallel iteration step, ` local SVDs are
computed in parallel where each SVD is of block-order
r × r and comprises 2r off-diagonal blocks of A.

Our aim: Decrease the off-diagonal Frobenius norm in
each parallel iteration step as much as possible.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Clique-Based Block Ordering

Physical blocking factor: for p processors, let A be
partitioned into p block columns and block rows, each
processor contains one block column.

Logical blocking factor: ` = p/r for some integer r .

In each parallel iteration step, ` local SVDs are
computed in parallel where each SVD is of block-order
r × r and comprises 2r off-diagonal blocks of A.

Our aim: Decrease the off-diagonal Frobenius norm in
each parallel iteration step as much as possible.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Graph-Theoretical Formulation

Let G be a complete graph with p vertices (= physical
blocking factor). Let the edge (i , j) be weighted by
‖Aij‖2

F + ‖Aji‖2
F.

Task: Partition G into `/2 disjoint cliques of size r where
the weight of cliques (i.e., the sum of weights through
the edges belonging to chosen cliques) is maximized.

For r = 2 this is just the maximum-weight perfect
matching used in the Dynamic Ordering.

Main problem: For r ≥ 3, this task is NP-hard.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Graph-Theoretical Formulation

Let G be a complete graph with p vertices (= physical
blocking factor). Let the edge (i , j) be weighted by
‖Aij‖2

F + ‖Aji‖2
F.

Task: Partition G into `/2 disjoint cliques of size r where
the weight of cliques (i.e., the sum of weights through
the edges belonging to chosen cliques) is maximized.

For r = 2 this is just the maximum-weight perfect
matching used in the Dynamic Ordering.

Main problem: For r ≥ 3, this task is NP-hard.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Graph-Theoretical Formulation

Let G be a complete graph with p vertices (= physical
blocking factor). Let the edge (i , j) be weighted by
‖Aij‖2

F + ‖Aji‖2
F.

Task: Partition G into `/2 disjoint cliques of size r where
the weight of cliques (i.e., the sum of weights through
the edges belonging to chosen cliques) is maximized.

For r = 2 this is just the maximum-weight perfect
matching used in the Dynamic Ordering.

Main problem: For r ≥ 3, this task is NP-hard.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Graph-Theoretical Formulation

Let G be a complete graph with p vertices (= physical
blocking factor). Let the edge (i , j) be weighted by
‖Aij‖2

F + ‖Aji‖2
F.

Task: Partition G into `/2 disjoint cliques of size r where
the weight of cliques (i.e., the sum of weights through
the edges belonging to chosen cliques) is maximized.

For r = 2 this is just the maximum-weight perfect
matching used in the Dynamic Ordering.

Main problem: For r ≥ 3, this task is NP-hard.

Example

V V

V

VV

V6

5 4

3

21

CLIQUE 1: INDICES (1, 3, 5) (blocks and processors)

CLIQUE 2: INDICES (2, 4, 6) (blocks and processors)

Figure: Clique-based block ordering for p = 6, r = 3.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Example (cont.)

In the example above there are 2 local SVDs defined by
submatrices with block indices (1, 3, 5) and (2, 4, 6):

CL1 =

A11 A13 A15

A31 A33 A35

A51 A53 A55

 , CL2 =

A22 A24 A26

A42 A44 A46

A62 A64 A66

 .

MPI library: The SVD of CL1 is computed in the context
that consists of processors 1, 3 and 5.
Similarly, the SVD of CL2 is computed in the context
that consists of processors 2, 4 and 6.

In general, there are ` contexts, each with r processors.

Important: The matrix data is not moved explicitly
between processors at the beginning of a parallel
iteration step—just new contexts are created.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Example (cont.)

In the example above there are 2 local SVDs defined by
submatrices with block indices (1, 3, 5) and (2, 4, 6):

CL1 =

A11 A13 A15

A31 A33 A35

A51 A53 A55

 , CL2 =

A22 A24 A26

A42 A44 A46

A62 A64 A66

 .

MPI library: The SVD of CL1 is computed in the context
that consists of processors 1, 3 and 5.
Similarly, the SVD of CL2 is computed in the context
that consists of processors 2, 4 and 6.

In general, there are ` contexts, each with r processors.

Important: The matrix data is not moved explicitly
between processors at the beginning of a parallel
iteration step—just new contexts are created.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Example (cont.)

In the example above there are 2 local SVDs defined by
submatrices with block indices (1, 3, 5) and (2, 4, 6):

CL1 =

A11 A13 A15

A31 A33 A35

A51 A53 A55

 , CL2 =

A22 A24 A26

A42 A44 A46

A62 A64 A66

 .

MPI library: The SVD of CL1 is computed in the context
that consists of processors 1, 3 and 5.
Similarly, the SVD of CL2 is computed in the context
that consists of processors 2, 4 and 6.

In general, there are ` contexts, each with r processors.

Important: The matrix data is not moved explicitly
between processors at the beginning of a parallel
iteration step—just new contexts are created.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Example (cont.)

In the example above there are 2 local SVDs defined by
submatrices with block indices (1, 3, 5) and (2, 4, 6):

CL1 =

A11 A13 A15

A31 A33 A35

A51 A53 A55

 , CL2 =

A22 A24 A26

A42 A44 A46

A62 A64 A66

 .

MPI library: The SVD of CL1 is computed in the context
that consists of processors 1, 3 and 5.
Similarly, the SVD of CL2 is computed in the context
that consists of processors 2, 4 and 6.

In general, there are ` contexts, each with r processors.

Important: The matrix data is not moved explicitly
between processors at the beginning of a parallel
iteration step—just new contexts are created.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Work in one parallel iteration step

1 Given p, r , ` and actual weights ‖Aij‖2
F + ‖Aji‖2

F, find `
maximum-weight disjoint cliques using a genetic serial
algorithm in processor 1—this defines the new block
ordering.

2 Broadcast the new block ordering to all processors.
3 Delete old contexts.
4 Create ` contexts based on the new ordering, each

context of size r , and compute ` SVDs of block size
r × r in parallel by the two-sided Jacobi method.

5 Update left and right singular vectors in all processors
by matrix multiplications.

6 Update weights ‖Aij‖2
F + ‖Aji‖2

F.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Work in one parallel iteration step

1 Given p, r , ` and actual weights ‖Aij‖2
F + ‖Aji‖2

F, find `
maximum-weight disjoint cliques using a genetic serial
algorithm in processor 1—this defines the new block
ordering.

2 Broadcast the new block ordering to all processors.
3 Delete old contexts.
4 Create ` contexts based on the new ordering, each

context of size r , and compute ` SVDs of block size
r × r in parallel by the two-sided Jacobi method.

5 Update left and right singular vectors in all processors
by matrix multiplications.

6 Update weights ‖Aij‖2
F + ‖Aji‖2

F.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Work in one parallel iteration step

1 Given p, r , ` and actual weights ‖Aij‖2
F + ‖Aji‖2

F, find `
maximum-weight disjoint cliques using a genetic serial
algorithm in processor 1—this defines the new block
ordering.

2 Broadcast the new block ordering to all processors.
3 Delete old contexts.
4 Create ` contexts based on the new ordering, each

context of size r , and compute ` SVDs of block size
r × r in parallel by the two-sided Jacobi method.

5 Update left and right singular vectors in all processors
by matrix multiplications.

6 Update weights ‖Aij‖2
F + ‖Aji‖2

F.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Work in one parallel iteration step

1 Given p, r , ` and actual weights ‖Aij‖2
F + ‖Aji‖2

F, find `
maximum-weight disjoint cliques using a genetic serial
algorithm in processor 1—this defines the new block
ordering.

2 Broadcast the new block ordering to all processors.
3 Delete old contexts.
4 Create ` contexts based on the new ordering, each

context of size r , and compute ` SVDs of block size
r × r in parallel by the two-sided Jacobi method.

5 Update left and right singular vectors in all processors
by matrix multiplications.

6 Update weights ‖Aij‖2
F + ‖Aji‖2

F.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Work in one parallel iteration step

1 Given p, r , ` and actual weights ‖Aij‖2
F + ‖Aji‖2

F, find `
maximum-weight disjoint cliques using a genetic serial
algorithm in processor 1—this defines the new block
ordering.

2 Broadcast the new block ordering to all processors.
3 Delete old contexts.
4 Create ` contexts based on the new ordering, each

context of size r , and compute ` SVDs of block size
r × r in parallel by the two-sided Jacobi method.

5 Update left and right singular vectors in all processors
by matrix multiplications.

6 Update weights ‖Aij‖2
F + ‖Aji‖2

F.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Work in one parallel iteration step

1 Given p, r , ` and actual weights ‖Aij‖2
F + ‖Aji‖2

F, find `
maximum-weight disjoint cliques using a genetic serial
algorithm in processor 1—this defines the new block
ordering.

2 Broadcast the new block ordering to all processors.
3 Delete old contexts.
4 Create ` contexts based on the new ordering, each

context of size r , and compute ` SVDs of block size
r × r in parallel by the two-sided Jacobi method.

5 Update left and right singular vectors in all processors
by matrix multiplications.

6 Update weights ‖Aij‖2
F + ‖Aji‖2

F.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Genetic algorithm

The serial genetic algorithm for the maximum-weight
clique partition has been implemented in C++ using the
free available library GALIB (v.2.4.6) from MIT,
USA.
The genome is the 2D binary string of dimensions `× p
that represents one partition into disjoint cliques.
The crossover function creates two new genomes (son
and daughter) from two old genomes (parents) by
choosing the heavier individual cliques (better parent is
repeated).
The objective function, which should be maximized, is
the weight of a genome.
Typical run:
population size = 20,
number of generations = 104.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Genetic algorithm

The serial genetic algorithm for the maximum-weight
clique partition has been implemented in C++ using the
free available library GALIB (v.2.4.6) from MIT,
USA.
The genome is the 2D binary string of dimensions `× p
that represents one partition into disjoint cliques.
The crossover function creates two new genomes (son
and daughter) from two old genomes (parents) by
choosing the heavier individual cliques (better parent is
repeated).
The objective function, which should be maximized, is
the weight of a genome.
Typical run:
population size = 20,
number of generations = 104.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Genetic algorithm

The serial genetic algorithm for the maximum-weight
clique partition has been implemented in C++ using the
free available library GALIB (v.2.4.6) from MIT,
USA.
The genome is the 2D binary string of dimensions `× p
that represents one partition into disjoint cliques.
The crossover function creates two new genomes (son
and daughter) from two old genomes (parents) by
choosing the heavier individual cliques (better parent is
repeated).
The objective function, which should be maximized, is
the weight of a genome.
Typical run:
population size = 20,
number of generations = 104.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Genetic algorithm

The serial genetic algorithm for the maximum-weight
clique partition has been implemented in C++ using the
free available library GALIB (v.2.4.6) from MIT,
USA.
The genome is the 2D binary string of dimensions `× p
that represents one partition into disjoint cliques.
The crossover function creates two new genomes (son
and daughter) from two old genomes (parents) by
choosing the heavier individual cliques (better parent is
repeated).
The objective function, which should be maximized, is
the weight of a genome.
Typical run:
population size = 20,
number of generations = 104.

New Block
Orderings

Gabriel Okša

Problem
formulation

Parallel
Two-Sided
Block-Jacobi
Algorithm

Known Types
of Block
Ordering

New
Clique-Based
Block
Ordering

First
numerical
results

Genetic algorithm

The serial genetic algorithm for the maximum-weight
clique partition has been implemented in C++ using the
free available library GALIB (v.2.4.6) from MIT,
USA.
The genome is the 2D binary string of dimensions `× p
that represents one partition into disjoint cliques.
The crossover function creates two new genomes (son
and daughter) from two old genomes (parents) by
choosing the heavier individual cliques (better parent is
repeated).
The objective function, which should be maximized, is
the weight of a genome.
Typical run:
population size = 20,
number of generations = 104.

Table: Performance for p = 12, prec = 10−13, κ = 10, multiple
minimal SV. Tp is in seconds, RGA = (TGA/Tp) ∗ 100.

2 cliques 6 cliques
n niter Tp RGA niter Tp RGA

1000 37 98.8 4.3 409 866.1 7.5
2000 39 463.5 1.0 416 1544.8 4.2
3000 38 1393.3 0.3 406 3922.6 1.6
4000 36 3084.8 0.1 402 8054.4 0.8
5000 37 6144.0 0.1 403 15101.6 0.4
6000 37 9994.2 < 0.1 427 25951.0 0.2
7000 37 15926.5 < 0.1 412 39925.8 0.2
8000 35 23757.1 < 0.1 423 61874.0 0.1
9000 37 34040.0 < 0.1 417 85072.0 < 0.1

10000 38 56532.5 < 0.1 431 125658.6 < 0.1

	Problem formulation
	Parallel Two-Sided Block-Jacobi Algorithm
	Known Types of Block Ordering
	New Clique-Based Block Ordering
	First numerical results

