Parallel Multistage Programming Model Used in Portfolio Management

L. Halada
Institute of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia upsyhala@savba.sk

M.Lucka
Institute for Software Science, University of Vienna, Vienna, Austria lucka@par.univie.ac.at

I. Melichercik

Department of Economic and Financial Modeling, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, igor.melichercik@fmph.uniba.sk

AURORA - A Special Research Program funded by ASF
VEGA 1/1004/04 - Slovak Academy Grant Agency

Overview

- Portfolio management problem
- Multiperiod stochastic programming
- Tuning the model on historical data
- Mathematical background Algorithm, Parallelization, Implementation
- Financial and parallel performance
- Concluding remarks

Portfolio Management Problem

- Allocation of a given amount of money in different investments - portfolio selection
- Assets allocation in several currencies
- Uncertainty is of investments
- foreign exchange risk
- interest rate risk
- possible higher returns - the aim
- Portfolio manager has to decide: What bonds should he/she buy or sell?
In what currencies?

Basic Concept of Multi-period Stochastic Programming

- possibility to correct the decision in the future with respect to developments of financial markets
- make initial decision - in the future correct the decision with respect to developments of financial markets
- the data for the first period are known with certainty-some data concerning the future are stochastic, random
- dynamic nature of decision making - multi-stage stochastic programming model

The Problem is Uncertainty

- we do not know the future development of interest rates
- results are very sensitive to the choice of the interest rate scenarios
- scenarios have to be chosen carefully
- enough "standard scenarios"
" reasonably many "extreme scenarios"
" no "very extreme scenarios"
The uncertainty is represented by a scenario tree

Theoretical Problem Formulation

Inventory balance and cash-flow accounting Period 1

$$
\begin{aligned}
& h_{j}^{(0)}+b_{j}^{(1)}-s_{j}^{(1)}=h_{j}^{(1)} \\
& c^{(0)}+\sum_{j} b i d_{j}^{(1)} s_{j}^{(1)}=\sum_{j} a s k_{j}^{(1)} b_{j}^{(1)}
\end{aligned}
$$

Period $1<\dagger<T$

$\mathrm{j}=1,2, \ldots$ number of currencies
$h_{j}^{(\tau-1)}($ pred $)+b_{j}^{(\tau)}($ node $)-s_{j}^{(\tau)}($ node $)=h_{j}^{(\tau)}($ node $)$
$\sum_{j} b i d_{j}^{(\tau)}($ node $) s_{j}^{(\tau)}($ node $)=\sum_{j} a s k_{j}^{(\tau)}($ node $) b_{j}^{(\tau)}($ node $)$

No short positions

$$
b_{j}^{\tau} \geq 0 ; s_{j}^{\tau} \geq 0 ; h_{j}^{\tau} \geq 0
$$

Terminal wealth calculation at time horizon T

$$
W T\left(\omega^{T}\right)=\sum_{j} \xi_{j}^{T}\left(\omega^{T}\right) h_{j}^{T-1}\left(\alpha\left(\omega^{T}\right)\right), \text { for all } \omega^{\mathrm{T}} \in F_{T}
$$

$\xi_{j}^{T}\left(\omega^{T}\right) \quad$ Bid price, index j $\quad 1 \leq \tau<T$
$\left.h_{j}^{T-1}\left(\alpha\left(\omega^{T}\right)\right)\right)^{\text {Ammunt of hold units, index } \mathrm{j}}$
ω^{τ} is a node in the scenario tree in the time level τ
Objective function maximizes the terminal welth

$$
E(W T)=\sum_{\omega^{\mathrm{T}} \in F \tau} \pi\left(\omega^{\tau}\right) W T\left(\omega^{\tau}\right)
$$

$\pi\left(\omega^{T}\right) \quad$ probability of the scenario ω^{T}

Size of the problem

Decision variables: b_{j} (node), s_{j} (node), h_{j} (node)

$$
j=1,2, \ldots \text { number of currencies }
$$

\rightarrow number of variables is proportional to the number \rightarrow of nodes grows exponentially with number of stages

Example 1

4 currencies $\rightarrow 4 \times 3=12$ decision variables per node
3 possibilities for each currency development per stage
3 stages
$\rightarrow 3^{4}=81$ possibilities of market development per stage
$\rightarrow 12 \times\left(1+81+81^{2}\right)=79716$ decision variables

Size of the problem $A \times B$

Example 2

4 currencies $\rightarrow 4 \times 3=12$ decision variables per node 300 possibilities for each currency development at stage 1
300 possibilities for each currency development at stage 2
$\rightarrow 12^{\star}\left(1+A+A^{*} B\right)$ possibilities of marke \dagger development
$\rightarrow 1083612$ decision variables

Scenario tree generation

The price is supposed to follow the discretized lognormal process

$$
\text { price }_{j}^{\tau+1}=\operatorname{price}_{j}^{\tau} \cdot \exp \left(\mu_{j} \cdot \Delta t+\sigma_{j} \cdot \sqrt{\Delta t} \cdot Z_{j}\right) \quad Z_{j} \sim N(0,1)
$$

Z_{j} is random variable with normal distribution, Monte Carlo simulations, correlations $\operatorname{cor}\left(Z_{i}, Z_{j}\right)$ and volatilities σ_{j} are calibrated using historical data
Suppose, that the price process is mean reverting to the prescribed price $P_{j}^{(\tau+1)}$

$$
\begin{aligned}
E\left(\text { price }_{j}^{(\tau+1)} \mid \text { price }_{j}^{\tau}\right) & =P_{j}^{(\tau+1)} \\
& \Rightarrow \mu_{j}=\log \left(\frac{P_{j}^{(\tau+1)}}{\text { price }_{j}^{\tau}}\right) \cdot \frac{1}{\Delta t}-\frac{1}{2} \sigma_{j}^{2}
\end{aligned}
$$

Mathematical background modeling on historical data

for $D=$ start_day, end_day do

1. Read indices of government bonds for the date $D, D-k \Delta t$, $k=0,1,2,3$, and $j=1,2,3,4$
2. generate the scenario tree
3. calculate bid and ask prices, and create the input matrix and vectors for the optimization problem
4. solve the optimization problem
5. calculate the new value of the portfolio
end do

Solving the optimization problem

$$
\begin{gathered}
\max c^{T} x, c \text { and } x \in R^{n}, \\
\mathrm{x} \text { is the vector of decision variables } \\
\text { subject to } \\
A x=b, \quad x \geq 0, \quad b \in R^{m} \\
A \text { is a constrained matrix } \\
\min b^{T} y, \quad \text { subject to } \\
A^{T} y+z=c, \quad z \geq 0 \\
\mathrm{y} \text { are dual variables, } \mathrm{z} \text { are slack variables } \\
\hline
\end{gathered}
$$

Primal-Dual IPM

- N. Karmarkar: A new polynomial-time algorithm for linear programming, Combinatorica 4, 1984, pp.373-395
Polynomial complexity
- Mehrotra's predictor-corrector algorithm
- Mehrotra, S. 1992. On the Implementation of a Primal-dual Interior Point Method. SIAM J. Optim.2, 575-601.
- Stephen J.Wright: Primal-Dual InteriorPoint Methods, SIAM 1997
- a variant of Mehrotra's IPM - used in the codes such as LIPSOL, LOQO, PCx

Properties of the IPM Method

- A
- D has full row rank, it is fix diagonal matrix with strictly positive entries
-b
- D, b
- ($\left.A D A^{+}\right) \Delta y=b$ 90-95\% computing time
- sparse Cholesky decomposition, solving the system of linear equations
- BQ decomposition
- Birge, J.R.,Qi, L. Management Sci.,34,1988
- Birge, J.R., Holmes, D.F., Comput.Optim.Appl.,1,1992

MPC ALGORITHM, pp. 198

Given a point $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ with $(\mathrm{x}, \mathrm{z})>0$ the affine - scaling direction is found by solving the system:
$\left(\begin{array}{ccc}0 & A^{T} & I \\ A & 0 & 0 \\ Z & 0 & X\end{array}\right)\left(\begin{array}{c}\Delta x^{a f f} \\ \Delta y^{a f f} \\ \Delta z^{a f f}\end{array}\right)=\left(\begin{array}{c}-r_{c} \\ -r_{b} \\ -X Z e\end{array}\right)$
r_{c}, r_{b} and r_{μ} are residual vectors
residuals : $r_{b}=A x-b, r_{c}=A^{T} y+z-c, r_{\mu}=-X Z e$
$\Delta x^{\text {aff }}:=Z^{-1}\left(X A^{T} \Delta y^{\text {aff }}+r_{\mu}-X r_{c}\right)$
IPM approach
$\Delta y^{a f f}:=\left(A D A^{T}\right)^{-1}+\left(r_{b}+A Z^{-1}\left(X r_{c}-r_{\mu}\right)\right)$, path-following method iterative Newton method
$\Delta z^{a f f}:=X^{-1}\left(r_{\mu}-Z \Delta x^{a f f}\right)$,
$D=Z^{-1} X$

$$
\begin{aligned}
& \sigma=\left(\mu_{\text {aff }} / \mu\right)^{3}, \quad \alpha_{\text {aff }}^{\text {pri }}=\arg \max \left\{\alpha \in[0,1], x+\alpha \Delta x^{a f f} \geq 0\right\} \\
& \mu=x^{T} z / n, \quad \alpha_{\text {aff }}^{\text {dual }}=\arg \max \left\{\alpha \in[0,1], z+\alpha \Delta z^{\text {aff }} \geq 0\right\} \text {, } \\
& \alpha_{\text {aff }}^{\text {dual }}, \alpha_{\text {aff }}^{\text {pri }} \quad \text { are centering parameters } \\
& \mu_{\text {aff }}=\left(x+\alpha_{a f f}^{p r i} \Delta x^{\text {aff }}\right)^{T}\left(z+\alpha_{\text {aff }}^{\text {dual }} \Delta z^{\text {aff }}\right) / n \\
& r_{b}=0, r_{c}=0, r_{\mu}=\sigma \mu e-\Delta X^{a f f} \Delta Z^{\text {aff }} e \text {, } \\
& \left(\Delta x^{c c}, \Delta y^{c c}, \Delta z^{c c}\right) \\
& \left(\Delta x^{k}, \Delta y^{k}, \Delta z^{k}\right)=\left(\Delta x^{\text {aff }}, \Delta y^{a f f}, \Delta z^{\text {aff }}\right)+\left(\Delta x^{c c}, \Delta y^{c c}, \Delta z^{c c}\right) \\
& \alpha_{\text {max }}^{p r i}=\arg \max \left\{\alpha \geq 0 ; x^{k}+\alpha \Delta x^{k} \geq 0\right\} \quad \alpha_{\text {max }}^{\text {dual }}=\arg \max \left\{\alpha \geq 0 ; z^{k}+\alpha \Delta z^{k} \geq 0\right\} \\
& \alpha_{k}^{p r i}=\min \left(0.99 * \alpha_{\max }^{p r i}, 1\right) \quad \alpha_{k}^{\text {dual }}=\min \left(0.99 * \alpha_{\text {max }}^{\text {dua }}, 1\right) \\
& x^{k+1}=x^{k}+\alpha_{k}^{p r i} \Delta x^{k}, \quad k=0,1,2, \ldots \\
& \left(y^{k+1}, z^{k+1}\right)=\left(y^{k}, z^{k}\right)+\alpha_{k}^{\text {dual }}\left(\Delta y^{k}, \Delta z^{k}\right)
\end{aligned}
$$

Matrix A for Three-Stage Stochastic Model

Matrix A for the Two-Stage Stochastic Model

Matrix $A^{(1)}{ }_{i j}$

$\left[\begin{array}{cccccccccccc}p_{b}(0,1) & p_{b}(0,2) & p_{b}(0,3) & p_{b}(0,4) & p_{s}(0,1) & p_{s}(0,2) & p_{s}(0,3) & p_{s}(0,4) & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right]$

Matrix $\mathrm{T}^{(1)} \mathrm{ij}$

$$
\left[\begin{array}{llllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Solving the system $\left(A D A^{\top}\right) \Delta y=b$

- Birge, J.R.,Qi, L. Management Sci.,34,1988
- Birge, J.R., Holmes, D.F., Comput.Optim.Appl.,1,1992
- direct solver
- (ADA $)^{-1}$ Sherman-Woodbury-Morrison formula
- decomposition of the system to smaller systems
- almost independent calculations suited for parallel execution
- sparse matrix multiplication
- about 0,001\% nonzero elements
- 300×300 the system (ADA ${ }^{\top}$) has 451056 unknowns

$$
\begin{aligned}
& R^{(3)}=A^{(3)} D^{(3)}\left(A^{(3)}\right)^{t} \\
& R^{(3)}=\mathrm{R}^{(3)}+U^{(3)} \mathrm{D}^{(3)}\left(V^{(3)}\right)^{t} \\
& \mathrm{R}^{(3)}=\operatorname{Diag}\left(I_{m_{0}}, A_{1}^{(2)} D_{1}^{(2)}\left(A_{1}^{(2)}\right)^{t}, A_{1}^{(2)} D_{1}^{(2)}\left(A_{1}^{(2)}\right)^{t}\right)=
\end{aligned}
$$

$$
\operatorname{Diag}\left(I_{m_{0}}, R_{1}^{(2)}, R_{2}^{(2)}\right)
$$

$$
U^{(3)} D^{(3)}\left(V^{(3)}\right)^{t}=\left(\begin{array}{c}
A_{0} I_{m_{0}} \\
T_{1}^{(3)} \\
T_{2}^{(3)}
\end{array}\right)\left(\begin{array}{ll}
D_{0} & \\
& I_{m_{0}}
\end{array}\right)\binom{A_{0}^{t}\left(T_{1}^{(3)}\right)^{t}\left(T_{2}^{(3)}\right)^{t}}{-I_{m_{0}}}
$$

Sherman - Morrison - Woodbury - formula
$\left(R^{(3)}\right)^{-1}=\left(\mathrm{R}^{(3)}\right)^{-1}-\left(\mathrm{R}^{(3)}\right)^{-1} U^{(3)}\left(G^{(3)}\right)^{-1}\left(V^{(3)}\right)^{t}\left(\mathrm{R}^{(3)}\right)^{-1}$
it holds if and only if $\mathrm{R}^{(3)}$ and $G^{(3)}$ are nonsingular
$\mathrm{G}^{(3)}=\left(\begin{array}{cc}D_{0}^{-1}+A_{0}^{t} A_{0}+\sum_{i=1}^{2}\left(T_{i}^{(3)}\right)^{t}\left(R_{i}^{(2)}\right)^{-1} T_{i}^{(3)} & A_{0}^{t} \\ -A_{0} & 0\end{array}\right)=\left(\begin{array}{cc}G^{(3)} & A_{0}^{t} \\ -A_{0} & 0\end{array}\right)$
the solution

$$
\begin{aligned}
R^{(3)} \Delta y^{(3)} & =b^{(3)} \\
\Delta y^{(3)} & =p^{(3)}-s^{(3)} \\
\mathrm{R}^{(3)} p^{(3)} & =b^{(3)} \\
G^{(3)} q^{(3)} & =\left(V^{(3)}\right)^{t} p^{(3)} \\
\mathrm{R}^{(3)} s^{(3)} & =U^{(3)} q^{(3)}
\end{aligned}
$$

Three-stage procedure

1. solve $\left(A_{k}{ }^{(2)} D_{k}{ }^{(2)}\left(A_{k}{ }^{(2)}\right)^{\dagger} ; b_{k}{ }^{(2)}\right)$
2. compute matrix $G{ }^{(3)}$ - dependent on all $T_{k}{ }^{(3)} p_{k}{ }^{(2)}$
3. solve $\left(A_{k}{ }^{(2)} D_{k}{ }^{(2)}\left(A_{k}{ }^{(2)}\right)^{\dagger} ; T_{k}{ }^{(3)} q_{1}{ }^{(3))}\right)$
4. calculate $\Delta y_{k}{ }^{(3)}=p_{k}{ }^{(2)}-s_{k}{ }^{(2)}$

$$
k=1,2, \ldots N^{(3)}
$$

Two-stage procedure

1. Solve $\left(A_{j}{ }^{(1)} D_{j}{ }^{(1)}\left(A_{j}{ }^{(1)}\right)^{\dagger} ; b_{j}{ }^{(1)}\right)$
2. compute matrix $G{ }^{(2)}$ - dependence on all $T_{j}{ }^{(2)} p_{j}{ }^{(1)}$
3. solve $\left.\left(A_{j}{ }^{(1)} D_{j}{ }^{(1)}\left(A_{j}{ }^{(1)}\right)+; T_{j}{ }^{(1)} q_{j}{ }^{(1)}\right)\right)$
4. calculate $\left.\Delta y_{j}{ }^{(2)}=p_{j}{ }^{(1)}\right)-s_{j}{ }^{(1)} j=1,2, \ldots M$

MPI Parallelization with LAPACK

- NP = P×Q virtual processor array
- P processors processed in parallel large block rows
- Q processors processed in parallel twostage problems
- mostly independent calculations in both levels
- two steps with collective gathering in every two-stage problem and every iteration
- two steps with collective gathering in three-stage problem and every iteration

September 8, 2006

Hardware Facilities

- IBM 1350 cluster
(aurora.tuwien.ac.at)
- 72 IBM $\times 335$ nodes
- 144 Pentium IV Nocona 3.6 Ghz processors (2 cpus per node)
- Linux operating system (Redhat)
- infiniband low latency node interconnect

Parallel performance

-the size of $A^{(3)}$ is 451505×1083612
-scenarios: 300-300

- ADA 451505 unknowns
- 2167220 nonzero $203856765025 A^{(3)}$
- one day modeling

NP	P×Q								
	1×2	2×1	1×4	2×2	4×1	1×8	2×4	4×2	8×1
2	171.7	97.67							
4			119.3	73.33	60.92				
8						95.58	71.42	48.33	41.74
	1×16	2×8	4×4	8×2	16×1				
16	71.92	52.4	41.17	36.4	23.4				

Financial performance

- Tests on historical data January 1997- January 2003
- Bond indices of 10 years government bonds USD, EUR, CHF, GBP
- Domestic currency was USD
- 300 scenarios per stage
- $\Delta t=6$ weeks, it means 2 weeks for the 3 -stage and 3 weeks for the 2 stage model
- Expected prices were real future returns with normal perturbation

$$
\frac{P_{j}^{(2)}}{I_{j}^{(1)}}=\frac{I_{j}^{(2)}}{I_{j}^{(1)}}+\sigma_{e} Z_{1, j}, \frac{P_{j}^{(3)}}{P_{j}^{(2)}}=\frac{I_{j}^{(3)}}{I_{j}^{(2)}}+\sigma_{e} Z_{2, j}, \frac{P_{j}^{(4)}}{P_{j}^{(3)}}=\frac{I_{j}^{(4)}}{I_{j}^{(3)}}+\sigma_{e} Z_{3, j}
$$

$\sigma_{e} \quad$ standard deviation of the error

$$
\sigma_{e}=0, \quad \sigma_{e}=5 \%, \quad \sigma_{e}=10 \%, \quad \sigma_{e}=20 \%
$$

Conclusion remarks

- Does it make sense to increase number of stages?
YES, IF
we work with "good" information
- increasing the number of stages need not to improve the quality of the solution - it depends of the quality of information
- stability issues - preconditioning
- comparison with sparse solvers

