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Motivation of DE solver parallelisation

As 0D-modelling of Complex mechanical systems leads to
solve ODE or/and DAE systems with

a large number of unknowns
(up to 10,000 state variables + algebraic relations).
large stiffness.
eventually discontinuities.

These features need to have :
a robust solver.
an adaptive time step solver
(to circumvent the stiffness).
a fast solver to deliver the solution
(real speed up compared to the best sequential solver).

But No distance limited coupling between the unknowns as
in FE or FD methods used for PDE ⇒ less easy
parallelisation.
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Three approaches to parallelise ODE solvers

Parallelising ”across the method” (K. Burrage) which
distributes to the processors the computation of steps
of multi-step methods as Runge-Kutta RK(4) method
Schur Decomposition which automatically distributes
the unknowns of the differential system to the
processors.
Time decomposition method

Multiple Shooting Methods
”Parareal” scheme (J.L. Lions, Y. Maday, G.
Turinici,00),
”Pita” scheme (Ch. Farhat and M. Chandesris, 03).
”Multiple shooting method” (J. Stoer & R. Burlish 80,
Deuflhard 74).

Pipelined Deferred Correction.
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Parallelising across the method
Description

Assume to be solved the following Cauchy problem{
y ′ = f (t , y)

y(t0) = y0

A s-stage Runge-Kutta method can be written as :{
Z = (A⊗ Is)hF (Z )

y1 = y0 +
∑

dizi
(1)

Parallelisation according to the structure of the tensor
product.

A⊗ Is implemented as Is ⊗ A
→ hence we have to compute Is ⊗ (AhF (Z ))

the s computations of AhF (Z ) are done in parallel.
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Parallelising across the method
Example : a V10Injection problem
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Parallelising across the method
Results

time (s) séquential parallel speed up
comp. jacobian 260
comm. jacobian 28.6
total jacobian 847 288.6 2.93
comp. stages 43.5
comm. stages 44.7
total stages 143 88.2 1.62

total execution 1082 436 2.48

TAB.: Comparison between the sequential version and the parallel
version (on 3 processors) of parallelised radau5 solver

⇒ But with this kind of parallelisation, the number of
processors is limited by the stage number of the
method.
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LSODA Integrator
Definition

LSODA is notable for its ability to automatically switch
between stiff and non-stiff integration.
⇒ The Suite of Nonlinear and Differential/Algebraic

Equation Solvers (SUNDIALS) (CVODE).
It solves any ODE written in its Cauchy form :

∂y
∂t

= f (t , y)

y(t0) = y0

The stiff integrator uses a ”predictor-corrector” scheme.
A prediction ỹ can be computed from a polynomial fit of
the previous values yn−1, ..., yn−k .
This prediction is corrected by solving for u a nonlinear
system :

G(u) = u − ỹ − γ

[
f (tm, u)− ∂ỹ

∂t

]
= 0

where γ is a constant calculated by the integrator.
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LSODA Integrator
Newton

A Newton’s method is used to solve G(u) = 0.
The application of Newton’s method requires(

∂G
∂t

)
(u)−1δu = (I − γJ)δu = b

to be solved, where J is the Jacobian matrix.
⇒ J can have structural changes due to idle subsytems ⇒

No constant pattern during the simulation avoids
symbolic factorisation.

⇒ The idea is to use the Schur Complement to solve this
linear system.

⇒ But how can we decompose the unknowns of an ODE
systems ?

⇒ But there is no (trivial) space decomposition as in PDE
problems.
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Strategy

Consider the system

ẏ1 = f1(y1)

ẏ2 = f2(y1, y2, y3)

ẏ3 = f3(y1, y3)

ẏ4 = f4(y4)

ẏ5 = f5(y4, y5)

(2)

To study the coupling of the variables, the functions fi
are viewed as black-boxes.
The input values may influence the derivatives
According to the graph theory, the Jacobian matrix is
viewed as an adjacency matrix.

1 0 0 0 0
1 1 1 0 0
1 0 1 0 0
0 0 0 1 0
0 0 0 1 1
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Graph partitioning tools
metis

We want to minimize the number of couplings between
the unknowns of different subdomains.
In graph theory formulation, the reduction is done by a
minimisation of the number of edge cuts in the graph.

⇒ Metis has been used to do this task.
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FIG.: Example : Jacobian matrices to the V10Injection problem
with 287 unknowns (left : original pattern, right : after partitioning
into 2 partitions)
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Graph partitioning tools
example 3/3
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FIG.: Example : Jacobian matrices to a problem with 287
unknowns on 4 processors (left : original pattern, right : after
partitioning into 4 partitions)
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Schur Decomposition
Algebraic Point Of View

We consider a Doubly Bordered Block Diagonal (DBBD)
form of a matrix A.

A =



B1 F1 · · · 0
. . .

...
. . .

...
BN 0 · · · FN

E1 C11 · · · C1N
. . .

...
. . .

...
EN CN1 · · · CNN


=

(
B F
E C

)
(3)

Locally have to be solved :(
Bi Fi
Ei Cii

) (
xi

yi

)
+

(
0∑

j 6=i Cijyj

)
=

(
fi
gi

)
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Interpretation

(
Bi Fi
Ei Cii

) (
xi

yi

)
+

(
0∑

j 6=i Cijyj

)
=

(
fi
gi

)
xi is the subvector of unknowns that are interior to the
subdomain i .
yi is the subvector of interface unknowns of subdomain
i .
Fi is the subdomain to interface coupling seen from the
subdomains.
Ei is the interface to subdomain coupling seen from the
interface.
Cij is the interface i to interface j coupling seen from the
interface i .
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Schur Decomposition
Resolution

We assume that Bi is not singular.

xi = B−1
i (fi − Fiyi)

Upon substituting a reduced system is obtained :

Siyi +
∑
j 6=i

Cijyj = gi − EiB−1
i fi with Si = Cii − EiB−1

i Fi

Multiplying by S−1
i , one can obtain the following

preconditioned system for the interface


I S−1

1 C12 · · · S−1
1 C1N

S−1
2 C21 I · · · S−1

2 C2N
...

. . .
...

S−1
N CN1 · · · S−1

N CNN−1 I


 y1

...
yN

 =

 ĝ1
...

ĝN


(4)
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Schur Decomposition
Resolution

A solution method involves four steps :
obtain the rhs of the reduced system.

ĝi = S−1
i gi − EiB−1

i fi

compute the LU decomposition of the local Schur
complement matrix Si .

a LU decomposition of Ai gives the LU decomposition
of Si .

Ai =

„
Bi Fi

Ei Si + EiB−1
i Fi

«
=

„
LBi 0

EiU−1
Bi

LSi

« „
UBi L−1

Bi
Fi

0 USi

«
⇔ Si = LSi USi

solve the reduced system.
back-substitute to obtain the other unknowns (fully
parallel step).
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Schur Decomposition
Some difficulties

In most real problem, the Jacobian is ill-conditioned.
⇒ Need to use Preconditioned Schur Complement.

Example (V10Injection problem)

10+10 ≤ cond ≤ 10+16 (5)

The Schur complement matrix S is not built (high
computational cost and time dependence).
⇒ No direct solvers.
⇒ Krylov solver.

if the Jacobian matrix freezes during some steps.
⇒ Reuse the Krylov projection space.

Krylov projection #proc CPU time numerical speed-up
no 4 1750 1
yes 4 1515 1.15
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Schur Decomposition
Some results

#proc CPU time speed-up #Jac #discont #steps
1 6845 1 65355 1089 311115
2 4369 1.56 66131 1061 315357
3 1820 3.76 65787 1059 313064
4 1513 4.52 65662 1043 313158

With 3 processors, the speed-up is higher than using
the parallelisation ”across the method”.
It is not limited to 3 processors.
The speed-up is supra-linear in this test case.
These promising results can easily be applied to bigger
problems.
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Parareal Method : ∂y
∂t = f (t , y(t)), t ∈ [T0, Tf ], y(T 0) = y0.

Split the time interval into Si = [Ti , Ti+1] with TNts = Tf .

Then we solve in parallel

∂y i
k

∂t
= f (y i

k , t), t ∈ Si , y i
k (T i) = Y i

k . (6)

Finally the jumps ∆i
k are then corrected.

∂ck

∂t
= fy (t , yk )ck with ck (t0) = 0 and ck (t i+) = ck (t i−) + ∆i

k (7)
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Parallelism in Parareal : Algorithm 1 and Algorithm 2

S1 Init IBV with a coarse tolerance time integrator.(sequential).

y(T−i,last) → y(T +
i+1,first)

S2 until convergence do

S2.1 Parallel solve of the ODEs system with a time integrator fine
tolerance on subdomains [T +

i,j , T−i,j+1], j = 1, . . . , m

S2.2 Algorithm 1 : Sequential correction process (Gauss-Seidel
scheme)

ci(T−i,last) + ∆i,last → ci(T +
i+1,first)

S2.2b Algorithm 2 : Parallel correction process (Jacobi scheme)

∆i,last not sent → c̃i(T−i,last)

yi(T−i,last) + c̃i(T−i,last) → yi(T +
i+1,first)
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Beam problem : Stiff system of ODEs of dimension 2n

An anchored beam is governed by

z ′′ = C(z)v(z) + D(z)u(z, z ′)

where C is a tridiagonal matrix and D a bidiagonal matrix
with lower and upper entries and with :

vl = n4(zl−1 − 2zl + zl+1) + n2(cos(zl)Fv − sin(zl)Fu)

u = C−1(Dv + z ′
2
)

Fu = −φ(t), Fv = φ(t), φ(t) =

{
1.5sin2(t), 0 ≤ t ≤ π
0, t ≥ π

The problem is rewriten as a 1-order ODE(
z
w

)′
=

(
w
f (t , z, w)

)
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Results on Beam :

Beam problem with 200× 2 unknowns
elapse time (s) # processors

2 4 8 16
Initializing rtol = 10−2 1394 1366 1364 1366
Fine grid rtol = 10−5 2526 1080 587 312
correction rtol = 10−3 11260 4265 2184 1149

Total 15180 6711 4135 2827

TAB.: times and Parallel efficiency of Algorithm 2 on the beam
problem, with n = 200× 2 unknowns to perform 3 parareal
iterates.

Relaxation communication on the correction step can
enhance the parallelism but are still too high time
comsuming.
the correction problem is sensitive to the Jacobian
linearizing and can blow-up if not sufficient care is
taken on the size of subdomains.
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Deferred Correction

improve the accuracy of the time integration
spectral convergence property : M. Minion Appl. Numer.
Math. 48 (2004), no. 3-4, 369–387.Semi-implicit projection methods for

incompressible flow based on spectral deferred corrections. Workshop on Innovative Time Integrators

for PDEs.

Sequential iterative process : we propose a parallel
implementation to combine deferred correction method
with time domain decomposition.
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Sequential spectral DC

1 Compute an approximation y0.
2 Iterate until convergence

1 Compute an approximation δ0
m of the defect

δ(tm) = y(tm)− y0
m

δ0
m+1 = δ0

m +

∫ tm+1

tm

(
f (τ, y0(τ) + δ(τ))− q0(τ)

)
∂τ

−y0
m+1 + y0

m +

∫ tm+1

tm
q0(τ)∂τ

where q0
m a polynomial of degree k which interpolate

f (ti , y0(ti)) for i ∈ [m − k/2, m + k/2]

and
∫ tm+1

tm
q0(τ) exactly solved by quadrature formula.

2 Update the solution y1
m = y0

m + δ0
m.
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Parallel implementation of Time DDM with DC

1 Compute an approximation y0.
⇒ Send the solution y0(tlast−k : tlast) to next processor.

2 Iterate until convergence
1 Compute δ0

m
⇒ Send δ0(tlast−k : tlast) to the next processor and

δ0(tbegin : tbegin+k ) to the previous one.
2 Update the solution y1

m = y0
m + δ0

m.
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First Results on the DC

Sequential convergence study on a Lotka-Volterra problem
(prey-predator problem){

ẏ1 = µ1y1 + µ2y1y2

ẏ2 = µ2y2 + µ3y1y2
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Conclusions

The framework for Schur Decomposition applied to stiff
ODE/ADE systems is set.
Introduce an automatic graph framework to deal with
complex systems.
A combined time DDM and spectral deferred correction
has been proposed... (parallel code on going)

Future works :
Compare this framework with the existing data
partitioning algorithms implemented in Sundials.
Introduce adaptivity in the partitioning when there are
topological changes in the system during the
integration.
Validation in progress on bigger problems.
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