

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition

Overview of Schu Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Domain Decomposition Methods for Stiff ODEs/DAEs.

D. Guibert D. Tromeur-Dervout

CDCSP/ICJ UMR 5208 U.Lyon1-CNRS

September, 7-9th 2006

PMAA 06 - Rennes

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Outline

Parallel ODE Solver DGDTD

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Motivation of DE solver parallelisation

2 The limitation of the parallelisation across the method

Schur Decomposition applied to DE

- LSODA Integrator Definition
- Strategy and Graph partitioning tools
- Overview of Schur Decomposition

Time Domain Decomposition Method

- Multiple Shooting Method, Pita, Parareal
- Spectral Deferred Correction Method

Outline

Parallel ODF Solver DGDTD

Motivation of DE solver parallelisation

- Across the
- Decomposition

Motivation of DE solver parallelisation

- Strategy and Graph partitioning tools
- Time Domain Decomposition Method Multiple Shooting Method, Pita, Parareal

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Motivation of DE solver parallelisation

As 0D-modelling of Complex mechanical systems leads to solve ODE or/and DAE systems with

- a large number of unknowns (up to 10,000 state variables + algebraic relations).
- Iarge stiffness.
- eventually discontinuities.
- These features need to have :
 - a robust solver.
 - an adaptive time step solver (to circumvent the stiffness).
 - a fast solver to deliver the solution (real speed up compared to the best sequential solver).

But No distance limited coupling between the unknowns as in FE or FD methods used for PDE \Rightarrow less easy parallelisation.

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph

Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

- Parallelising "*across the method*" (K. Burrage) which distributes to the processors the computation of steps of multi-step methods as Runge-Kutta RK(4) method
- *Schur Decomposition* which automatically distributes the unknowns of the differential system to the processors.
- Time decomposition method
 - Multiple Shooting Methods
 - "Parareal" scheme (J.L. Lions, Y. Maday, G. Turinici,00),
 - "Pita" scheme (Ch. Farhat and M. Chandesris, 03).
 - "Multiple shooting method" (J. Stoer & R. Burlish 80, Deuflhard 74).
 - Pipelined Deferred Correction.

Outline

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Motivation of DE solver parallelisation

2 The limitation of the parallelisation across the method

- Schur Decomposition applied to DE
- LSODA Integrator Definition
- Strategy and Graph partitioning tools
- Overview of Schur Decomposition
- Time Domain Decomposition Method
 Multiple Shooting Method, Pita, Parareal
 Spectral Deferred Correction Method

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Parallelising across the method Description

Assume to be solved the following Cauchy problem

$$\begin{cases} \mathbf{y}' = f(t, \mathbf{y}) \\ \mathbf{y}(t_0) = \mathbf{y}_0 \end{cases}$$

A s-stage Runge-Kutta method can be written as :

$$\begin{cases} Z = (A \otimes I_s)hF(Z) \\ y_1 = y_0 + \sum d_i z_i \end{cases}$$
(1)

- Parallelisation according to the structure of the tensor product.
 - $A \otimes I_s$ implemented as $I_s \otimes A$
 - \rightarrow hence we have to compute $I_s \otimes (AhF(Z))$
 - the *s* computations of AhF(Z) are done in parallel.

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shooting Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Parallelising across the method

Example : a V10Injection problem

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Parallelising across the method Results

time (s)	séquential	parallel	speed up
comp. jacobian		260	
comm. jacobian		28.6	
total jacobian	847	288.6	2.93
comp. stages		43.5	
comm. stages		44.7	
total stages	143	88.2	1.62
total execution	1082	436	2.48

TAB.: Comparison between the sequential version and the parallel version (on 3 processors) of parallelised radau5 solver

But with this kind of parallelisation, the number of processors is limited by the stage number of the method.

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Parallelising across the method Results

time (s)	séquential	parallel	speed up
comp. jacobian		260	
comm. jacobian		28.6	
total jacobian	847	288.6	2.93
comp. stages		43.5	
comm. stages		44.7	
total stages	143	88.2	1.62
total execution	1082	436	2.48

TAB.: Comparison between the sequential version and the parallel version (on 3 processors) of parallelised radau5 solver

⇒ But with this kind of parallelisation, the number of processors is limited by the stage number of the method.

Outline

Parallel ODE Solver DGDTD

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE

LSODA Integrator Definition

Strategy & Graph Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Motivation of DE solver parallelisation

The limitation of the parallelisation across the method

Schur Decomposition applied to DE

- LSODA Integrator Definition
- Strategy and Graph partitioning tools
- Overview of Schur Decomposition

Time Domain Decomposition Method
Multiple Shooting Method, Pita, Parareal
Spectral Deferred Correction Method

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE

LSODA Integrator Definition

Strategy & Graph Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

- LSODA is notable for its ability to automatically switch between stiff and non-stiff integration.
 - ⇒ The Suite of Nonlinear and Differential/Algebraic Equation Solvers (SUNDIALS) (CVODE).
- It solves any ODE written in its Cauchy form :

$$\begin{cases} \frac{\partial \mathbf{y}}{\partial t} = f(t, \mathbf{y}) \\ \mathbf{y}(t_0) = \mathbf{y}_0 \end{cases}$$

- The stiff integrator uses a "predictor-corrector" scheme.

 - This prediction is corrected by solving for u a nonlinear system :

$$G(u) = u - \tilde{y} - \gamma \left[f(t_m, u) - \frac{\partial \tilde{y}}{\partial t} \right] = 0$$

where γ is a constant calculated by the integrator.

LSODA Integrator Definition

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE

LSODA Integrator Definition

Strategy & Graph Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

- A Newton's method is used to solve G(u) = 0.
- The application of Newton's method requires

$$\left(\frac{\partial \boldsymbol{G}}{\partial t}\right)(\boldsymbol{u})^{-1}\delta\boldsymbol{u} = (\boldsymbol{I} - \gamma \boldsymbol{J})\delta\boldsymbol{u} = \boldsymbol{b}$$

to be solved, where J is the Jacobian matrix.

- ⇒ J can have structural changes due to idle subsytems ⇒ No constant pattern during the simulation avoids symbolic factorisation.
- ⇒ The idea is to use the Schur Complement to solve this linear system.
- ⇒ But how can we decompose the unknowns of an ODE systems ?
- ⇒ But there is no (trivial) space decomposition as in PDE problems.

LSODA Integrator

Strategy

Parallel ODE Solver DGDTD

Motivation of DE solver parallelisation

- Across the method limited
- Schur Decomposition applied to DE LSODA Integrator Definition

Strategy & Graph Overview of Schur

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Consider the system

$$\begin{cases} \dot{y_1} = f_1(y_1) \\ \dot{y_2} = f_2(y_1, y_2, y_3) \\ \dot{y_3} = f_3(y_1, y_3) \\ \dot{y_4} = f_4(y_4) \\ \dot{y_5} = f_5(y_4, y_5) \end{cases}$$
(2)

- To study the coupling of the variables, the functions f_i are viewed as *black-boxes*.
- The input values may influence the derivatives
- According to the graph theory, the *Jacobian matrix* is viewed as an adjacency matrix.

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition

Strategy & Graph Overview of Schu Decomposition

Time Domair Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

FIG.: Example : Jacobian matrices to the *V10Injection problem* with 287 unknowns (left : original pattern, right; after partitioning

• We want to minimize the *number of couplings* between the unknowns of different subdomains.

Graph partitioning tools

metis

- In graph theory formulation, the reduction is done by a *minimisation of the number of edge cuts* in the graph.
- \Rightarrow *Metis* has been used to do this task.

Graph partitioning tools example 3/3

・ロット (雪) (日) (日)

Parallel ODE Solver DGDTD

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition

Strategy & Graph Overview of Schu Decomposition

Time Domair Decomposition Method

Multiple Shooting Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

FIG.: Example : Jacobian matrices to a problem with 287 unknowns on 4 processors (left : original pattern, right : after partitioning into 4 partitions)

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition

Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Schur Decomposition Algebraic Point Of View

・ ロ ト ・ 雪 ト ・ 国 ト ・ 日 ト

э

We consider a Doubly Bordered Block Diagonal (DBBD) form of a matrix A.

 $A = \begin{pmatrix} B_{1} & F_{1} & \cdots & 0 \\ & \ddots & \vdots & \ddots & \vdots \\ & B_{N} & 0 & \cdots & F_{N} \\ E_{1} & & C_{11} & \cdots & C_{1N} \\ & \ddots & \vdots & \ddots & \vdots \\ & & E_{N} & C_{N1} & \cdots & C_{NN} \end{pmatrix} = \begin{pmatrix} B & F \\ E & C \end{pmatrix} (3)$

Locally have to be solved :

$$\begin{pmatrix} B_i & F_i \\ E_i & C_{ii} \end{pmatrix} \begin{pmatrix} x_i \\ y_i \end{pmatrix} + \begin{pmatrix} 0 \\ \sum_{j \neq i} C_{ij} y_j \end{pmatrix} = \begin{pmatrix} f_i \\ g_i \end{pmatrix}$$

Interpretation

Parallel ODE Solver DGDTD

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator

Strategy & Graph

Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

$$\begin{pmatrix} B_i & F_i \\ E_i & C_{ii} \end{pmatrix} \begin{pmatrix} x_i \\ y_i \end{pmatrix} + \begin{pmatrix} 0 \\ \sum_{j \neq i} C_{ij} y_j \end{pmatrix} = \begin{pmatrix} f_i \\ g_i \end{pmatrix}$$

- *x_i* is the subvector of unknowns that are interior to the subdomain *i*.
- *y_i* is the subvector of interface unknowns of subdomain *i*.
- *F_i* is the subdomain to interface coupling seen from the subdomains.
- *E_i* is the interface to subdomain coupling seen from the interface.
- *C_{ij}* is the interface *i* to interface *j* coupling seen from the interface *i*.

Motivation of DE solver parallelisation

Across the method limited

Schur Decom position applied to DE LSODA Integrator

Strategy & Graph

Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Schur Decomposition Resolution

We assume that B_i is not singular.

$$x_i = B_i^{-1}(f_i - F_i y_i)$$

Upon substituting a reduced system is obtained :

$$S_i y_i + \sum_{j \neq i} C_{ij} y_j = g_i - E_i B_i^{-1} f_i$$
 with $S_i = C_{ii} - E_i B_i^{-1} F_i$

Multiplying by S_i^{-1} , one can obtain the following *preconditioned* system for the interface

$$\begin{pmatrix} I & S_1^{-1}C_{12} & \cdots & S_1^{-1}C_{1N} \\ S_2^{-1}C_{21} & I & \cdots & S_2^{-1}C_{2N} \\ \vdots & & \ddots & \vdots \\ S_N^{-1}C_{N1} & \cdots & S_N^{-1}C_{NN-1} & I \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix} = \begin{pmatrix} \hat{g_1} \\ \vdots \\ \hat{g_N} \end{pmatrix}$$
(4)

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition

Strategy & Graph

Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

A solution method involves four steps :

• obtain the rhs of the reduced system.

$$\hat{g}_i = S_i^{-1} g_i - E_i B_i^{-1} f_i$$

- compute the LU decomposition of the local Schur complement matrix *S_i*.
 - a LU decomposition of A_i gives the LU decomposition of S_i.

$$\begin{aligned} \boldsymbol{A}_{i} &= \begin{pmatrix} B_{i} & F_{i} \\ E_{i} & S_{i} + E_{i}B_{i}^{-1}F_{i} \end{pmatrix} = \begin{pmatrix} L_{B_{i}} & 0 \\ E_{i}U_{B_{i}}^{-1} & L_{S_{i}} \end{pmatrix} \begin{pmatrix} U_{B_{i}} & L_{B_{i}}^{-1}F_{i} \\ 0 & U_{S_{i}} \end{pmatrix} \\ &\Leftrightarrow S_{i} = L_{S_{i}}U_{S_{i}} \end{aligned}$$

- solve the reduced system.
- back-substitute to obtain the other unknowns (fully parallel step).

Schur Decomposition

Resolution

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition

Strategy & Graph

Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

- In most real problem, the Jacobian is ill-conditioned.
 - $\Rightarrow\,$ Need to use Preconditioned Schur Complement.

Example (V10Injection problem)

 $10^{+10} \leq \textit{cond} \leq 10^{+16}$

(5)

- The Schur complement matrix *S* is not built (high computational cost and time dependence).
 - ⇒ No direct solvers.
 - \Rightarrow Krylov solver.
 - if the Jacobian matrix freezes during some steps.
 - \Rightarrow Reuse the Krylov projection space.

Krylov projection	#proc	CPU time	numerical speed-up
no	4	1750	1
yes	4	1515	1.15

Schur Decomposition

Some difficulties

Schur Decomposition Some results

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition

Strategy & Graph

Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

#proc	CPU time	speed-up	#Jac	#discont	#steps
1	6845	1	65355	1089	311115
2	4369	1.56	66131	1061	315357
3	1820	3.76	65787	1059	313064
4	1513	4.52	65662	1043	313158

- With 3 processors, the speed-up is higher than using the parallelisation "across the method".
- It is not limited to 3 processors.
- The speed-up is supra-linear in this test case.
- These promising results can easily be applied to bigger problems.

Outline

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

Parallel ODE Solver DGDTD

Motivation of DE solver parallelisation

- Across the method limited
- Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur
- Decomposition

Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Motivation of DE solver parallelisation

The limitation of the parallelisation across the method

- Schur Decomposition applied to DE
- LSODA Integrator Definition
 - Strategy and Graph partitioning tools
- Overview of Schur Decomposition
- Time Domain Decomposition Method
 Multiple Shooting Method, Pita, Parareal
 Spectral Deferred Correction Method

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shooting Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Parareal Method : $\frac{\partial y}{\partial t} = f(t, y(t)), t \in [T_0, T_f], y(T^0) = y_0.$

• Then we solve in parallel

$$\frac{\partial y_k^i}{\partial t} = f(y_k^i, t), \quad t \in S^i, \quad y_k^i(T^i) = Y_k^i.$$
(6)

• Finally the jumps Δ_k^i are then corrected.

 $\frac{\partial c_k}{\partial t} = f_y(t, y_k)c_k \text{ with } c_k(t_0) = 0 \text{ and } c_k(t^{i+}) = c_k(t^{i-}) + \Delta_k^i$ (7)

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur Decomosoliton

Time Domain Decomposition Method

Multiple Shooting Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Parallelism in Parareal : Algorithm 1 and Algorithm 2

S1 Init IBV with a coarse tolerance time integrator.(sequential).

$$y(T_{i,last}^{-}) \rightarrow y(T_{i+1,first}^{+})$$

S2 until convergence do

S2.1 Parallel solve of the ODEs system with a time integrator fine tolerance on subdomains $[T_{i,j}^+, T_{i,j+1}^-], j = 1, ..., m$

S2.2 Algorithm 1 : *Sequential* correction process (Gauss-Seidel scheme)

$$c_i(T^-_{i,last}) + \Delta_{i,last} \quad o \quad c_i(T^+_{i+1,first})$$

.2b Algorithm 2 : Parallel correction process (Jacobi scheme) $\Delta_{i,last} \text{ not sent} \rightarrow \tilde{c}_i(T^-_{i,last})$ $y_i(T^-_{i,last}) + \tilde{c}_i(T^-_{i,last}) \rightarrow y_i(T^+_{i+1,first})$

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur Decomosoliton

Time Domain Decomposition Method

Multiple Shooting Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Parallelism in Parareal : Algorithm 1 and Algorithm 2

S1 Init IBV with a coarse tolerance time integrator. (sequential).

$$y(T_{i,last}^{-}) \rightarrow y(T_{i+1,first}^{+})$$

S2 until convergence do

- S2.1 Parallel solve of the ODEs system with a time integrator fine tolerance on subdomains $[T_{i,j}^+, T_{i,j+1}^-], j = 1, ..., m$
- S2.2 Algorithm 1 : *Sequential* correction process (Gauss-Seidel scheme)

$$c_i(T^-_{i,last}) + \Delta_{i,last} \quad o \quad c_i(T^+_{i+1,first})$$

(日) (日) (日) (日) (日) (日) (日)

S2.2b Algorithm 2 : Parallel correction process (Jacobi scheme) $\Delta_{i,last} \text{ not sent} \rightarrow \tilde{c}_i(T^-_{i,last})$ $y_i(T^-_{i,last}) + \tilde{c}_i(T^-_{i,last}) \rightarrow y_i(T^+_{i+1 \text{ first}})$

Parallel ODE Solver DGDTD

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shooting Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Beam problem : Stiff system of ODEs of dimension 2n

An anchored beam is governed by

$$z'' = C(z)v(z) + D(z)u(z,z')$$

where C is a tridiagonal matrix and D a bidiagonal matrix with lower and upper entries and with :

$$v_{l} = n^{4}(z_{l-1} - 2z_{l} + z_{l+1}) + n^{2}(\cos(z_{l})F_{v} - \sin(z_{l})F_{u})$$
$$u = C^{-1}(Dv + {z'}^{2})$$
$$F_{u} = -\phi(t), \ F_{v} = \phi(t), \ \phi(t) = \begin{cases} 1.5sin^{2}(t), 0 \le t \le \pi\\ 0, t \ge \pi \end{cases}$$

The problem is rewriten as a 1-order ODE

$$\left(\begin{array}{c}z\\w\end{array}\right)'=\left(\begin{array}{c}w\\f(t,z,w)\end{array}\right)$$

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shooting Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Beam problem with 200 \times 2 unknowns				
elapse time (s)	# processors			
	2	4	8	16
Initializing $rtol = 10^{-2}$	1394	1366	1364	1366
Fine grid <i>rtol</i> = 10^{-5}	2526	1080	587	312
correction $rtol = 10^{-3}$	11260	4265	2184	1149
Total	15180	6711	4135	2827

TAB.: times and Parallel *efficiency* of Algorithm 2 on the beam problem, with $n = 200 \times 2$ unknowns to perform 3 parareal iterates.

- Relaxation communication on the correction step can enhance the parallelism but are still too high time comsuming.
- the correction problem is sensitive to the Jacobian linearizing and can blow-up if not sufficient care is taken on the size of subdomains.

Deferred Correction

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur

Time Domain Decomposition Method

Multiple Shooting Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

- improve the accuracy of the time integration
- spectral convergence property : M. Minion Appl. Numer. Math. 48 (2004), no. 3-4, 369–387.Semi-implicit projection methods for

incompressible flow based on spectral deferred corrections. Workshop on Innovative Time Integrators for PDEs.

• Sequential iterative process : we propose a parallel implementation to combine deferred correction method with time domain decomposition.

(日) (日) (日) (日) (日) (日) (日)

Parallel ODE Solver DGDTD

Motivation of DE solver parallelisation

Across the method limited

Schur Decom position applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

• Compute an approximation y^0 .

- Iterate until convergence
 - Compute an approximation δ_m^0 of the defect $\delta(t_m) = y(t_m) y_m^0$

$$\delta_{m+1}^{0} = \delta_{m}^{0} + \int_{t_{m}}^{t_{m+1}} \left(f(\tau, y^{0}(\tau) + \delta(\tau)) - q^{0}(\tau) \right) \partial \tau$$
$$-y_{m+1}^{0} + y_{m}^{0} + \int_{t_{m}}^{t_{m+1}} q^{0}(\tau) \partial \tau$$

where q_m^0 a polynomial of degree *k* which interpolate $f(t_i, y^0(t_i))$ for $i \in [m - k/2, m + k/2]$ and $\int_{t_m}^{t_{m+1}} q^0(\tau)$ exactly solved by quadrature formula. 2 Update the solution $y_m^1 = y_m^0 + \delta_m^0$.

Motivation of DE solver parallelisation

Across the method limited

Schur Decom position applied to DE LSODA Integrator Definition Strategy & Graph

Time Domain Decomposi-

tion Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Parallel implementation of Time DDM with DC

- Compute an approximation y^0 .
- ⇒ Send the solution $y^0(t_{last-k} : t_{last})$ to next processor.
- Iterate until convergence
 - Compute δ_m^0
 - ⇒ Send $\delta^0(t_{last-k}: t_{last})$ to the next processor and $\delta^0(t_{begin}: t_{begin+k})$ to the previous one.
 - 2 Update the solution $y_m^1 = y_m^0 + \delta_m^0$.

First Results on the DC

Parallel ODE Solver DGDTD

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

Sequential convergence study on a Lotka-Volterra problem (prey-predator problem)

$$\begin{cases} \dot{y}_1 = \mu_1 y_1 + \mu_2 y_1 y_2 \\ \dot{y}_2 = \mu_2 y_2 + \mu_3 y_1 y_2 \end{cases}$$

Outline

Parallel ODE Solver DGDTD

Motivation of DE solver parallelisation

- Across the method limited
- Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur Decomposition
- Time Domain Decomposi-
- Method
- Multiple Shootin Method, Pita, Parareal
- Spectral Deferred Correction Method

Conclusions

Motivation of DE solver parallelisation

- The limitation of the parallelisation across the method
 - Schur Decomposition applied to DE
 - LSODA Integrator Definition
 - Strategy and Graph partitioning tools
 - Overview of Schur Decomposition
- Time Domain Decomposition Method
 Multiple Shooting Method, Pita, Parareal
 Spectral Deferred Correction Method
- Conclusions

Conclusions

Parallel ODE Solver DGDTD

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

Conclusions

- The framework for Schur Decomposition applied to stiff ODE/ADE systems is set.
- Introduce an automatic graph framework to deal with complex systems.
- A combined time DDM and spectral deferred correction has been proposed... (parallel code on going)

• Future works :

- Compare this framework with the existing data partitioning algorithms implemented in Sundials.
- Introduce adaptivity in the partitioning when there are topological changes in the system during the integration.
- Validation in progress on bigger problems.

Conclusions

Parallel ODE Solver DGDTD

Motivation of DE solver parallelisation

Across the method limited

Schur Decomposition applied to DE LSODA Integrator Definition Strategy & Graph Overview of Schur Decomposition

Time Domain Decomposition Method

Multiple Shootin Method, Pita, Parareal

Spectral Deferred Correction Method

- The framework for Schur Decomposition applied to stiff ODE/ADE systems is set.
- Introduce an automatic graph framework to deal with complex systems.
- A combined time DDM and spectral deferred correction has been proposed... (parallel code on going)
- Future works :
 - Compare this framework with the existing data partitioning algorithms implemented in Sundials.
 - Introduce adaptivity in the partitioning when there are topological changes in the system during the integration.
 - Validation in progress on bigger problems.